Vorschrift 5

Kaliumtetrathionat K2S4O6

Arbeitsvorschrift

In 60 ml H₂O wird solange SO₂ Gas eingeleitet, bis sich eine durchscheinende kristalline Masse von SO₂*6H₂O ergibt (etwa 30 Minuten). Danach gibt man unter Rühren eine auf -15°C vorgekühlte Lösung von 7,5 g S₂Cl₂ in 60 ml Petrolether in Portionen von 2 ml zu. Nach vollständiger Umsetzung (Lösung nahezu entfärbt) werden die Phasen getrennt. Die organische Phase wird verworfen, durch die wässrige Phase wird zum Austreiben des überschüssigen SO₂ Luft durchgesaugt (etwa 2 Stunden). Die erhaltene Lösung wird auf 0°C gekühlt und mit einer Lösung von 26g KOH in 160 ml Ethanol auf pH 6-7 neutralisiert. Die dabei entstehenden weißen Kristalle werden abfiltriert und zur weiteren Reinigung bei 60°C – 70°C aus möglichst wenig H₂O umkristallisiert. Das erhaltene weiße, kristalline K₂S₄O₆ wird abfiltriert und über P₄O₁₀ getrocknet. Ausbeute: 70 %.

Anmerkungen

SO₂ besitzt einen stark stechenden unangenehmen Geruch und reizt die Atemwege. S₂Cl₂ hydrolysiert an der Luft, ist giftig und zeigt ebenfalls einen unangenehmen Geruch. Petrolether ist brennbar.

Aufgabenstellung

- Stellen Sie die Reaktionsgleichungen auf (beginnend mit SO₂ und H₂O) und berechnen Sie den Ansatz auf 5 g K₂S₄O₆ (bei 100 % Ausbeute)
- Fertigen Sie eine detaillierte Apparaturskizze an
- Führen Sie die Synthese durch und bestimmen Sie die Ausbeute

Fragen

- Wie erzeugen Sie Temperaturen von 0 bzw. –15°C?
- Was ist Petrolether?
- Warum darf der pH Wert bei der Neutralisation 7 nicht übersteigen?
- Warum darf die Temperatur beim Umkristallisieren nicht größer als 70°C sein
- Beschreiben Sie detailliert den Vorgang und den Sinn des Umkristallisierens

Literatur

Handbuch der präparativen anorganischen Chemie. Hrsg. v. Georg Brauer., Enke Stuttgart, 3. Aufl., Bd 1. (1978), S.398.