Vectors for Recombinant DNA Technology

Plasmids Autonomous Replicaton Integration into genome Shuttle Plasmids *E.Coli* → Target host

Cosmids, Bacmids Plasmid – Bacteriophage Hybrids

Phages Bacteriophage Lambda Artificial Chromosomes YAC,

Viruses Baculovirus – Insect Cells Retroviruses – Mammalian Cells

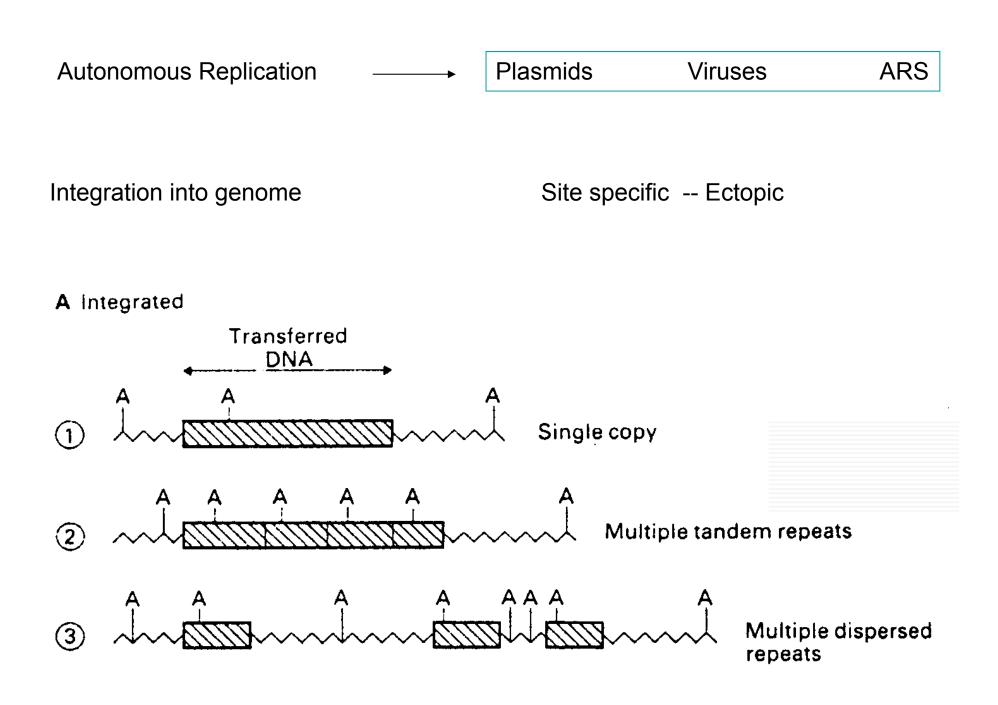
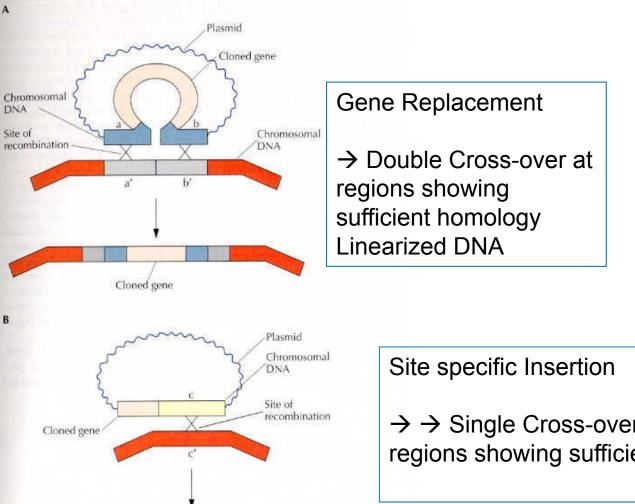
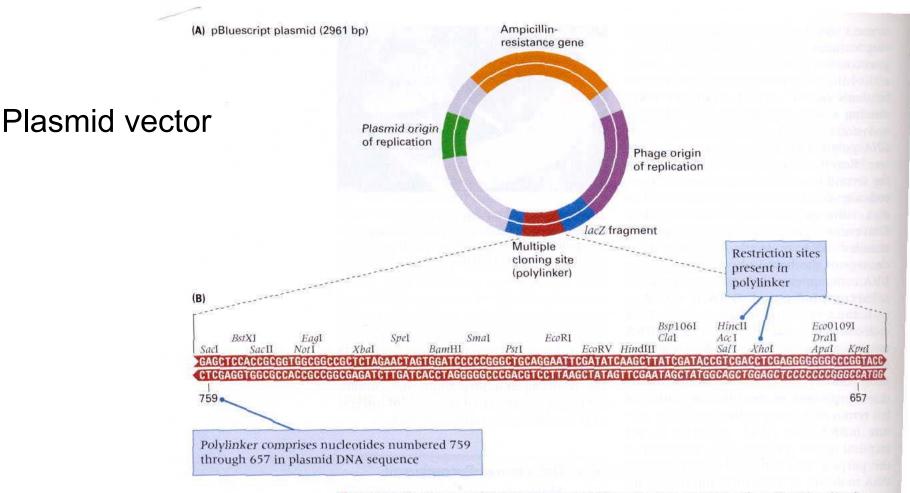



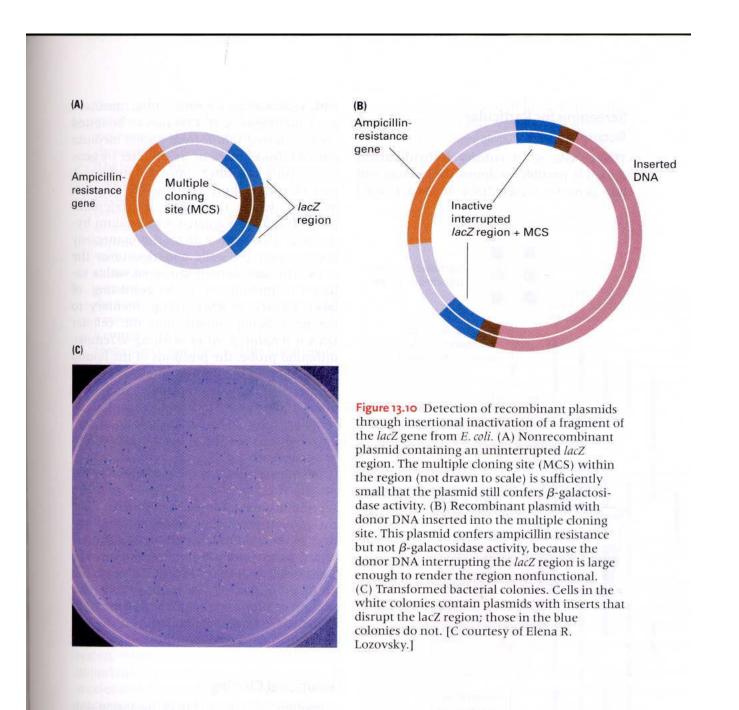
Figure 6.15 Two ways to integrate a cloned gene into a chromosomal site. A. On a plasmid, the cloned gene has been inserted in the middle of a cloned segment of DNA (ab) from the host chromosome. Homologous DNA pairing occurs between plasmid-borne DNA regions a and b and host chromosome DNA regions a' and b', respectively. A double-crossover event (X-X) results in the integration of the cloned gene. B. The cloned gene is inserted adjacent to the cloned DNA (c) from the host chromosome. Homologous DNA pairing occurs between plasmid DNA region c and host chromosome DNA region c . A single recombination event (X) within the paired c-c' DNA region results in the integration of the entire plasmid, including the cloned gene.

Plasmid

DNA



Cloned gene


Ectopic Integration

 \rightarrow Recombination at regions of no (low ?) Homology

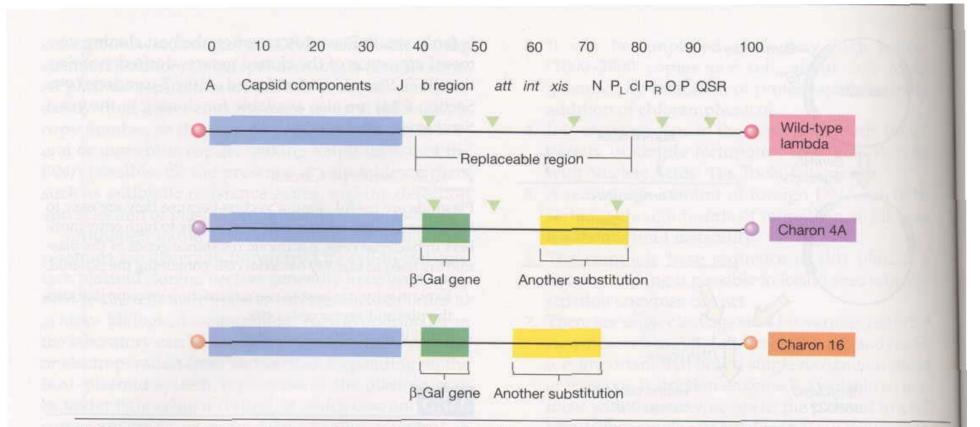

 \rightarrow \rightarrow Single Cross-over at regions showing sufficient homology

Figure 13.9 (A) Diagram of the cloning vector pBluescript II. It contains a plasmid origin of replication, an ampicillin-resistance gene, a multiple cloning site (polylinker) within a fragment of the *lacZ* gene from *E. coli*, and a bacteriophage origin of replication. (B) Sequence of the multiple cloning site showing the unique restriction sites at which the vector can be opened for the insertion of DNA *fragments*. The numbers 657 and 759 refer to the position of the base pairs in the complete sequence of pBluescript. [Courtesy of Stratagene Cloning Systems, La Jolla, CA.]

Bakteriophage Lambda Vectors

FIGURE 10.3 Molecular cloning with lambda. Abbreviated genetic map of bacteriophage lambda showing the cohesive ends as circles (\sim Figure 8.26). Charon 4A and 16 are both derivatives of lambda, which have various substitutions and deletions in the nonessential region. One of the substitutions in each case is a gene (β -Gal) that codes for the enzyme β -galactosidase, which permits detection of clones containing this phage. Whereas the wild-type lambda genome is 48.5 kilobase pairs, that for Charon 4A is 45.4 and that for Charon 16 is 41.7 kilobase pairs. The arrows (\checkmark) shown above the maps of each phage indicate the sites recognized by the restriction enzyme *Eco*RI.

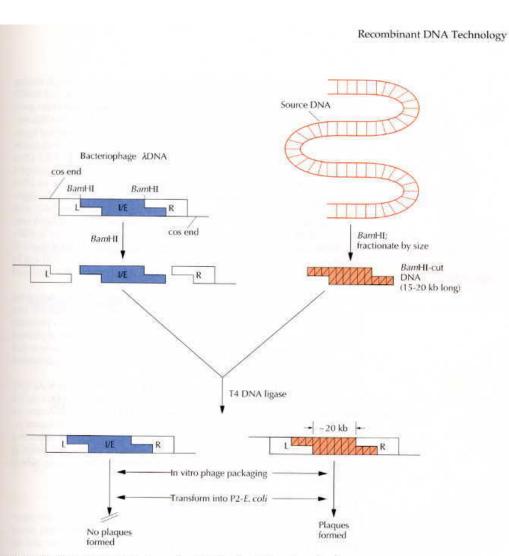
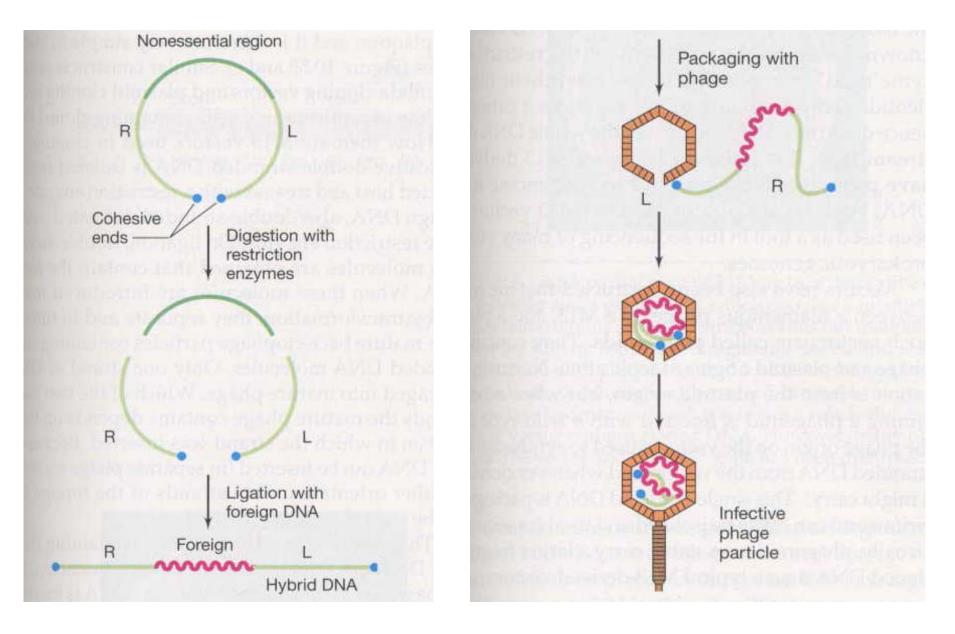
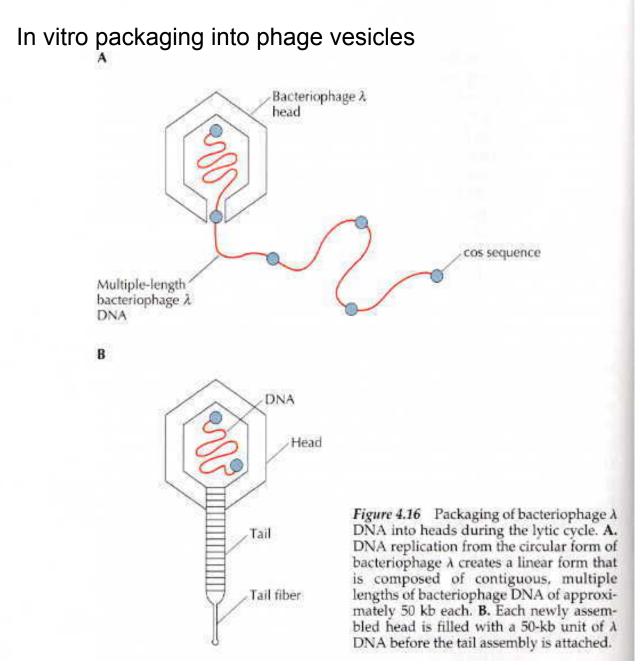
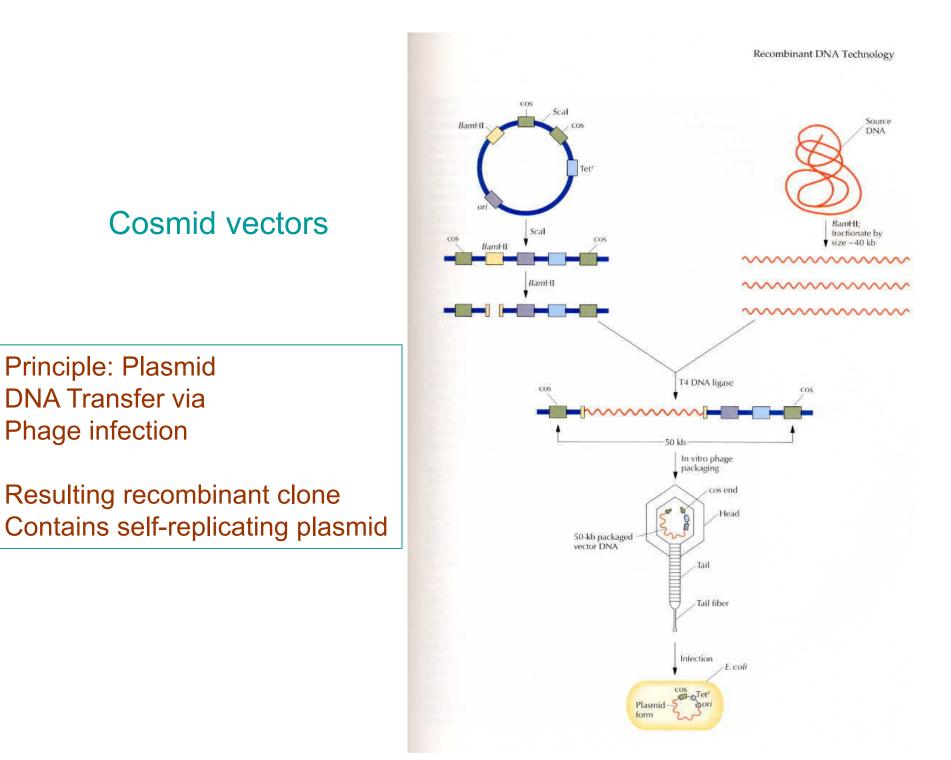
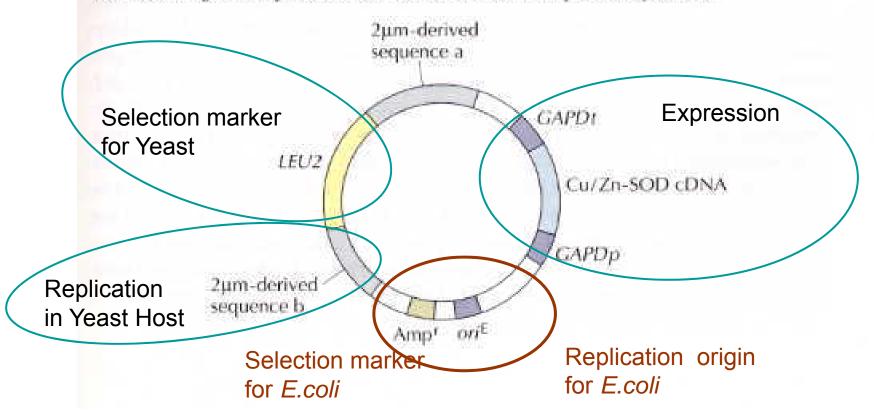
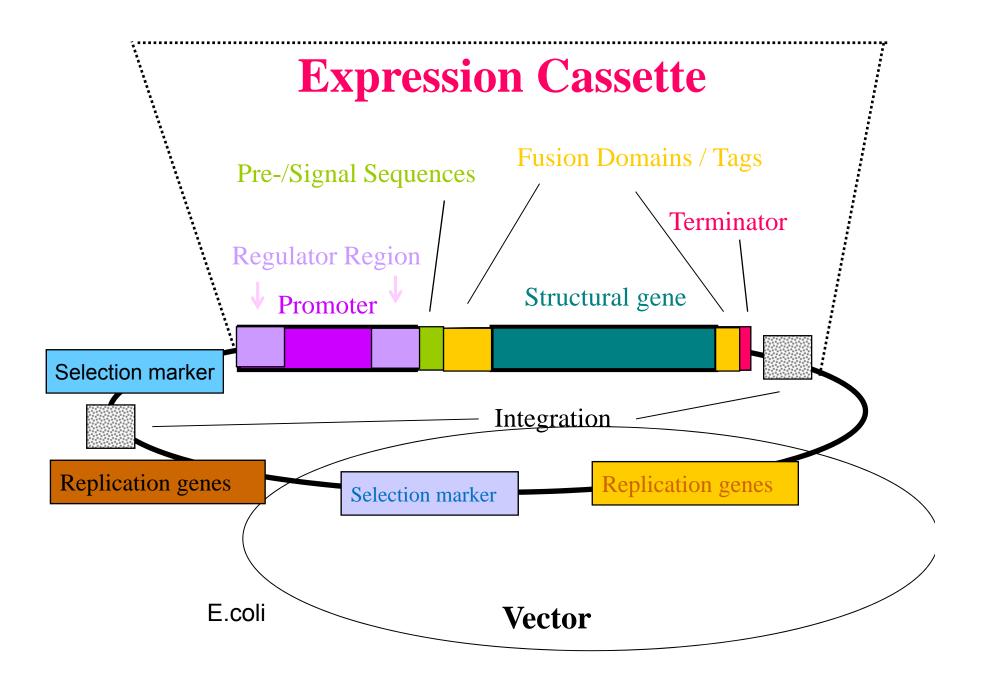





Figure 4.17 Bacteriophage λ cloning system. Bacteriophage λ is engineered to have two BamHI sites that flank the I/E region of the bacteriophage λ genome. The extensions indicate the cos ends of the λ DNA. For cloning, the source DNA is cut with BamHI and fractionated by size to isolate pieces that are 15 to 20 kb long. The bacteriophage λ DNA is also cut with BamHI. The two DNA samples are mixed and treated with T4 DNA ligase. The ligation reaction mixture will contain a number of different DNA molecules, including (1) reconstituted bacteriophage λ and (2) the bacteriophage λ L and R regions with a 20-kb piece of DNA from the source DNA instead of the 1/E region. These molecules are packaged into bacteriophage λ heads in vitro, and infective particles are formed after the addition of tail assemblies. After infection of *E*, *coli* cells that have P2 bacteriophage DNA integrated in their chromosomes, only the molecules are infectious bacteriophage λ . In this way, only the bacteriophage λ containing a DNA insert are perpetuated.

Cloning in Lambda Vectors





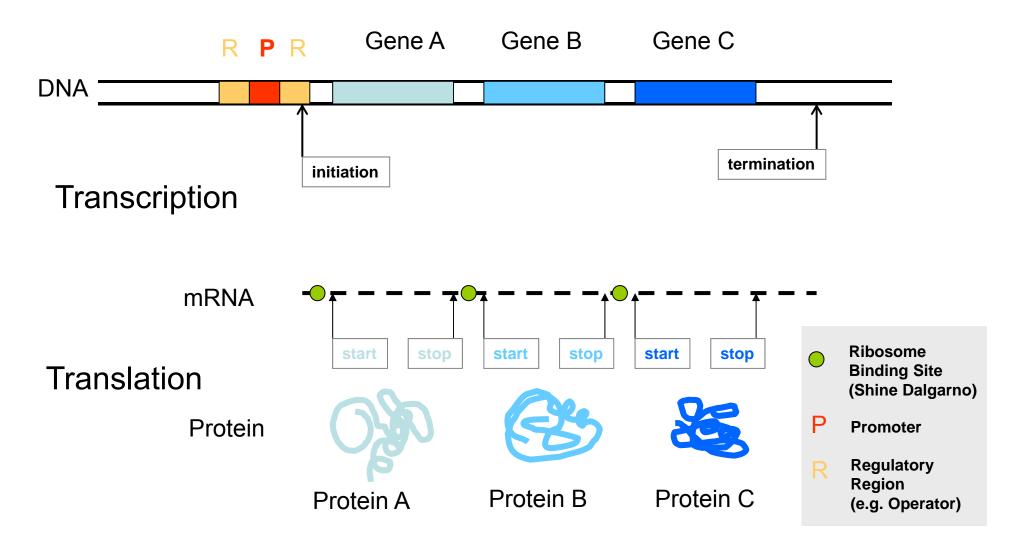

E.coli – Saccharomyces cerevisiae Shuttle Vector

Figure 7.4 S. cerevisiae expression vector. The cDNA for human Cu/Zn-SOD has been cloned between the promoter (*GAPDp*) and termination–polyadenylation sequence (*GAPDt*) of the *S. cerevisiae* glyceraldehyde phosphate dehydrogenase gene. The *LEU2* gene, cloned into the middle of the yeast 2μ m plasmid DNA, encodes an enzyme of the leucine biosynthesis pathway. The yeast origin of replication is included in the 2μ m plasmid sequences. The ampicillin resistance gene (Amp^r) and the *E. coli* origin of replication (*ori*^E) are derived from plasmid pBR322.

Gene Expression in Prokaryotes

Post-translational processing

9.10.14

Gene Expression – Points to consider

Location in Genome \rightarrow Autonomous replication, Integration

Transkription Initiation → Promoters Transkription Termination

Regulatory Systems → positive/negative regulatory systems

Transkript Processing

Translation Initiation

RNA Structure

Codon usage mRNA Stability

Post-translational modifications

Modification of AA-side chains: Glycosylation, Phosphorylation, etc Proteolytic Processing

Protein Folding

Disulfide bond formation

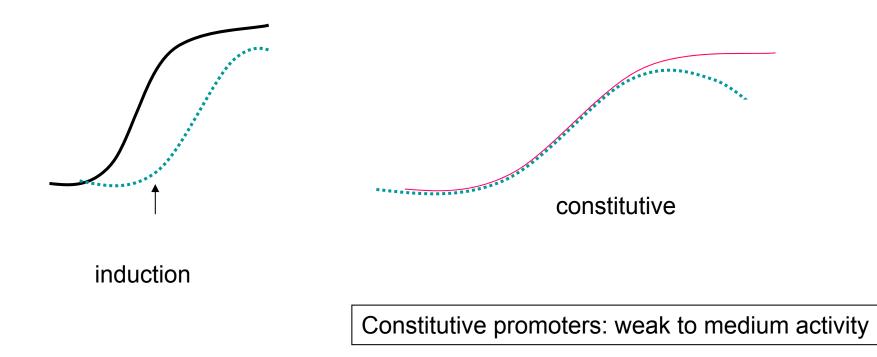
Assembly of subunits

Toxicity of gene producs

Protein Degradation

Localization		
	Intracellular	
	Periplasmic	
	Extracellular	
	Membrane associated	
	Organelle specific	
	Surface display	

Heterologous expression in prokaryotes – E.coli


Transcription

```
constitutive promoters
         regulated promoters
                  lambda p_L, p_R
                  lac, trp, tac. trc
                  Т7
         termination
                  rrnB (T1,T2), trpt
                  Lambda N gene (premature termination)
m-RNA stability
Translation
         Initiation – SD sequence ....AGGAG....
         elongation – codon usage
Proteolysis
         Lon, Clp, htpR (heat shock regulatory protein)
Plasmid copy number and segregation
```

Regulated Promoters $\leftarrow \rightarrow$ Constitutive Promoters

Both systems are used

Preferred Combination: strong Promoters – tightly regulated

Regulated Expression in Prokaryotes

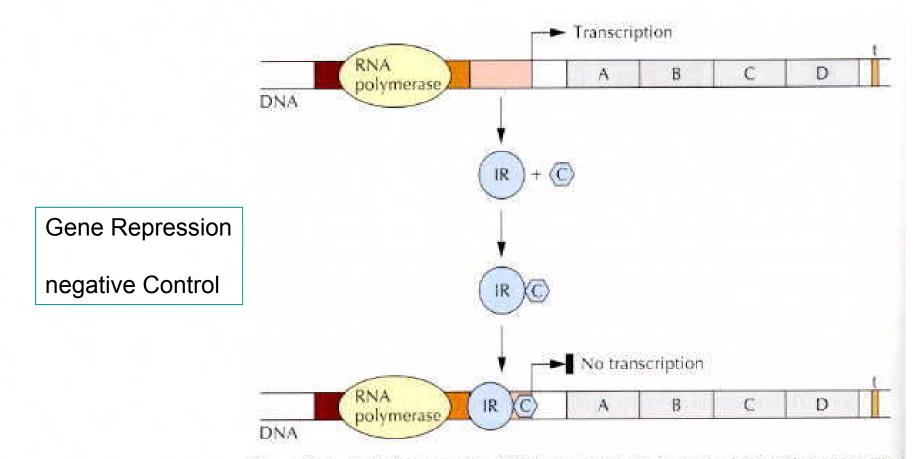
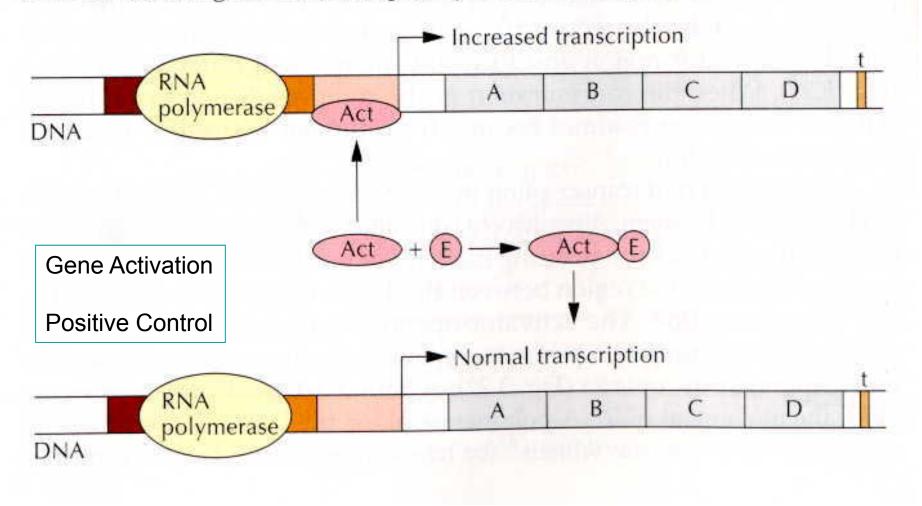
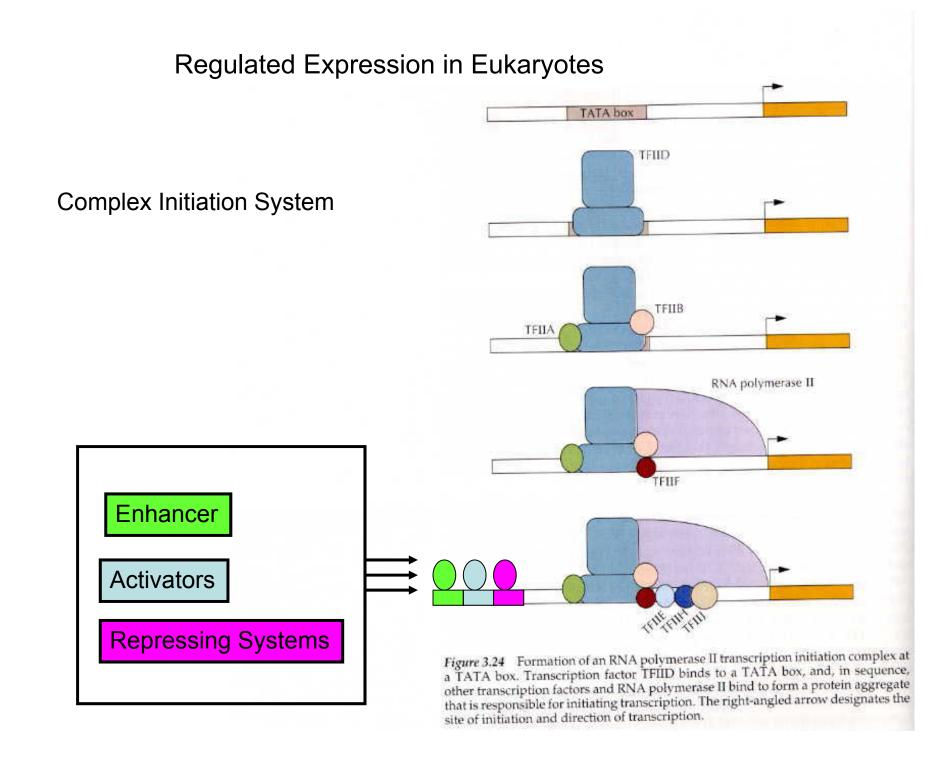




Figure 3.21 Induction of the off state for transcription of a bacterial operon. The binding of a corepressor molecule (C) to an inactive repressor protein (IR) changes the conformation of the repressor protein. The corepressor-repressor protein complex (IR-C) binds to the operator region and blocks transcription of the operon by RNA polymerase.

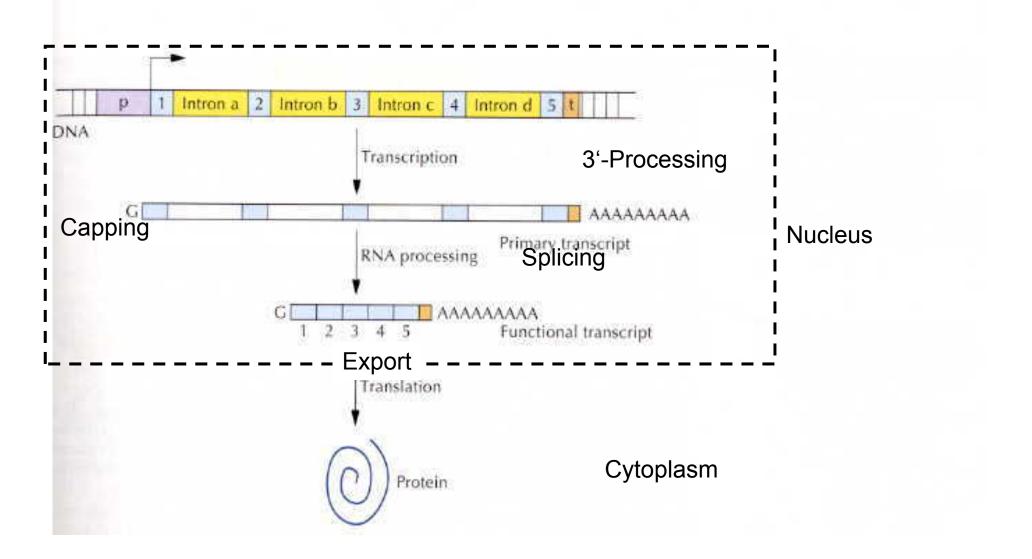
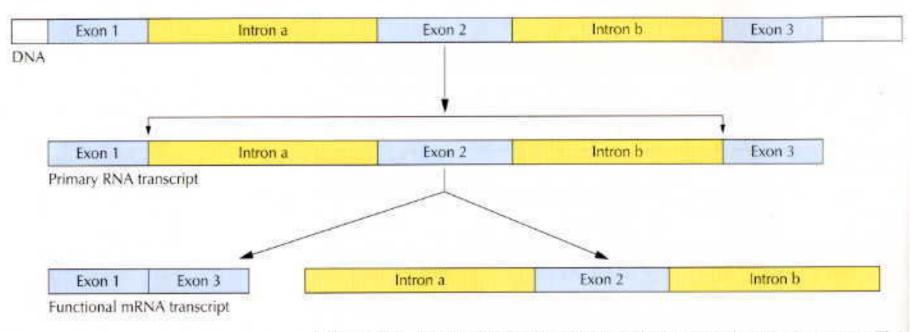
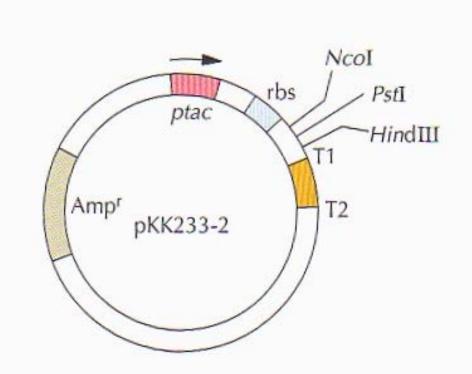

Regulated Expression in Prokaryotes

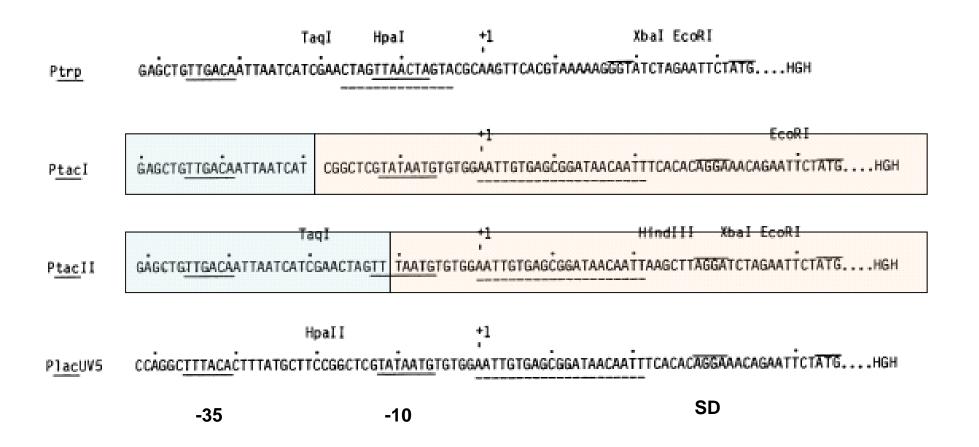
Figure 3.22 Activation and deactivation of a bacterial operon. An activator protein (Act) binds to an activating site and enhances the rate of transcription of the operon. An effector molecule (E) binds to the activator protein. The Act–E complex does not bind to the activating site. The rate of transcription of the operon is diminished when the activating site is not occupied by the activating protein.

RNA Processing \rightarrow Complex Mechanisms

30 CHAPTER 3

Alternative Splicing


Figure 3.13 Alternative splicing of a eukaryotic primary RNA transcript. The bracketing arrows mark the sites that are spliced together after the removal of the intervening DNA region. In this example, exon 2 flanked by introns 1 and 2 is spliced out of the primary transcript and exons 1 and 3 are spliced together to form a functional mRNA transcript.

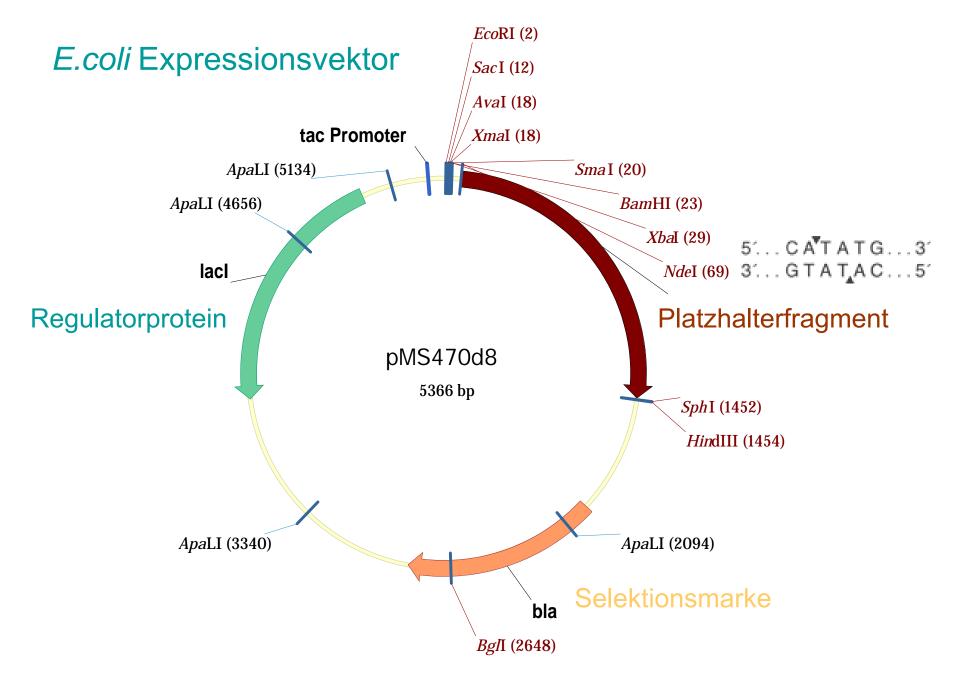
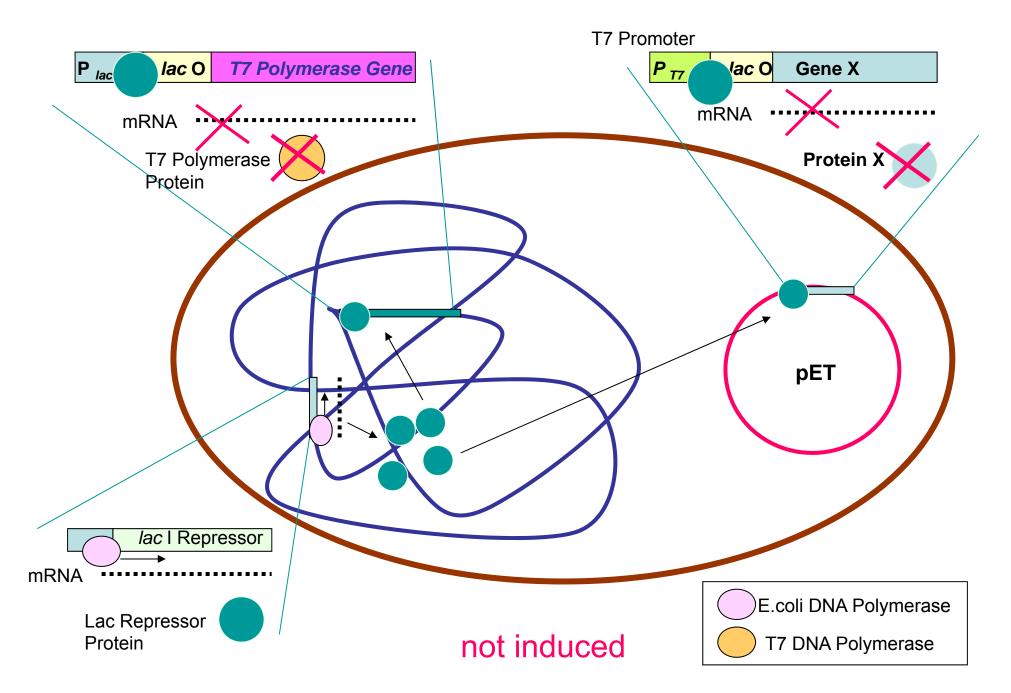
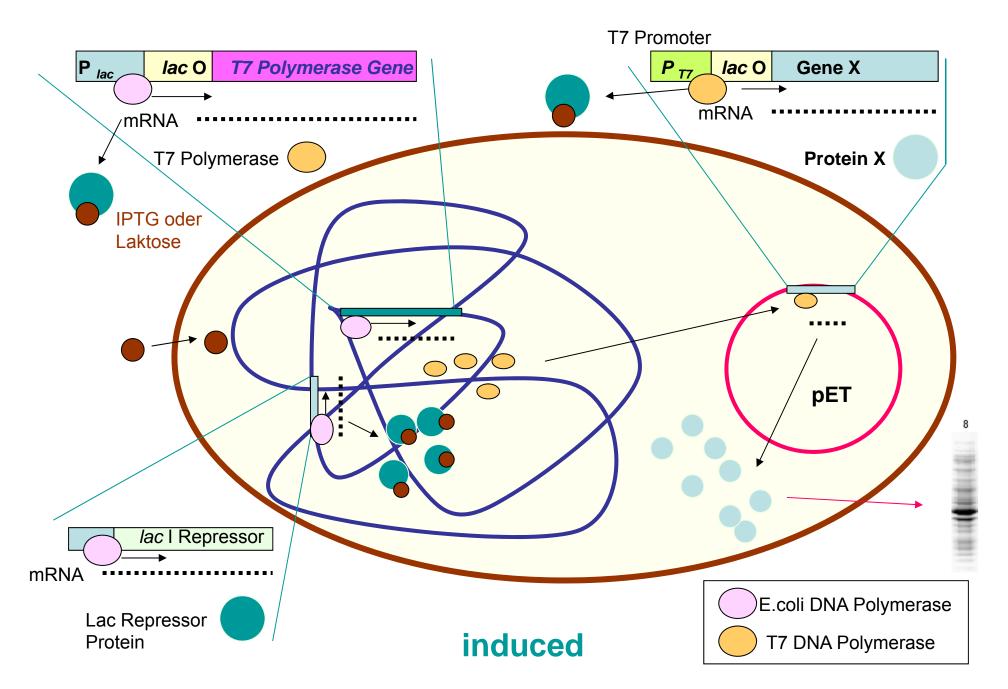
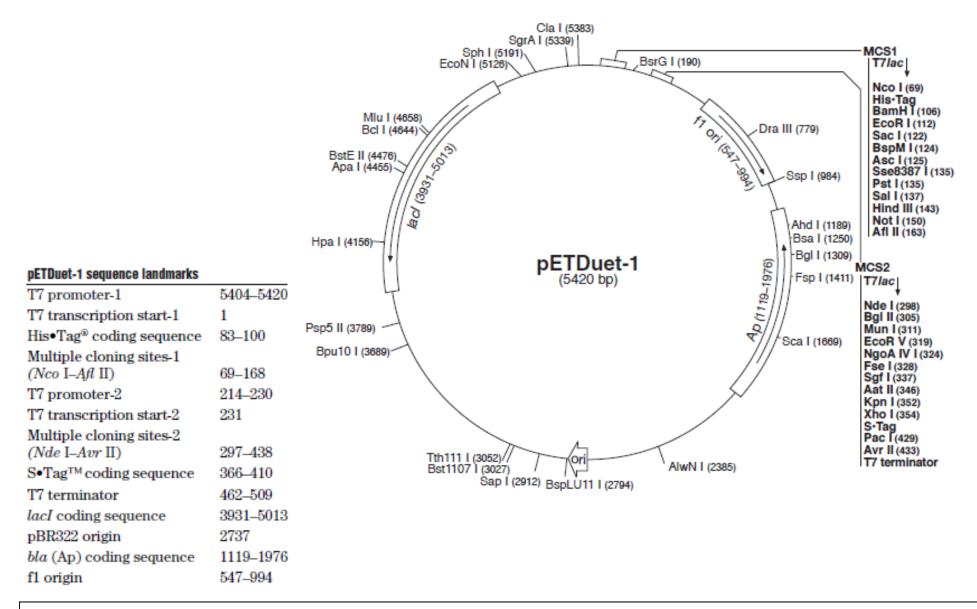


Figure 6.14 The expression vector pKK233-2. The plasmid pKK233-2 codes for the ampicillin resistance gene (Amp^r) as a selectable marker gene, the *tac* promoter (*ptac*), the *lacZ* ribosome binding site (rbs), three restriction endonuclease cloning sites (*NcoI*, *PstI*, and *Hin*dIII), and two transcription termination sequences (T1 and T2). The arrow indicates the direction of transcription. The plasmid is not drawn to scale.


Expression Systems for E.coli

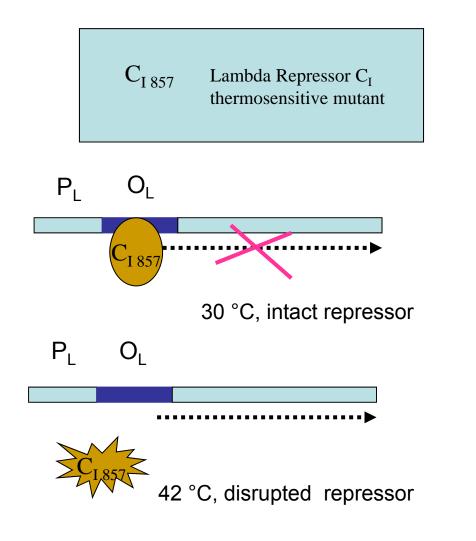
Inducible Promoters based on *lacl/lacO* repressor/operator

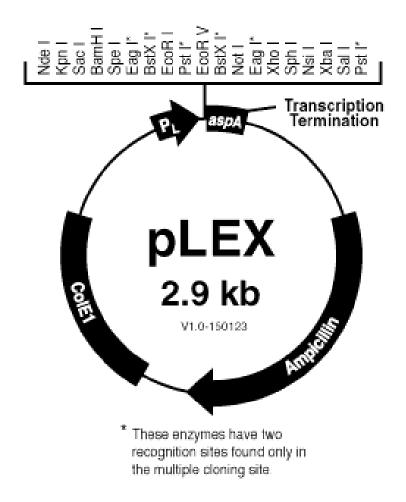




pET-Expression system

pET-Expression system





pETDuet[™]-1 is designed for the coexpression of two target genes. The vector contains two multiple cloning sites (MCS), each of which is preceded by a T7 promoter/*lac* operator and a ribosome binding site (rbs). The vector also carries the pBR322-derived CoIE1 replicon, *lacl* gene and ampicillin resistance gene.

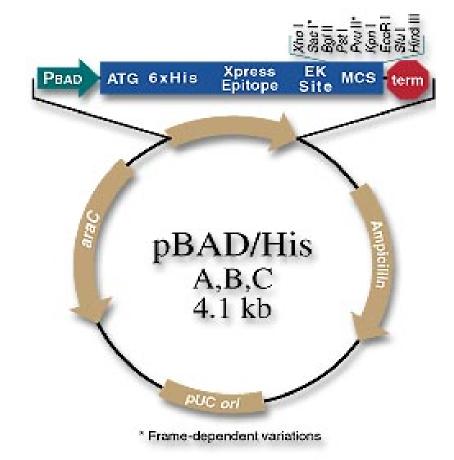
Bacteriophage Lambda Promoters $\rm P_L$ and $\rm P_R$

 P_L based Expression Vector

Arabinose Operon based Expression system

The pBAD Expression System is based on the *araBAD* operon which controls the arabinose metabolic pathway in E.coli. It allows you to precisely modulate heterologous expression to levels that are optimal for recovering high yields of your protein of interest.

The pBAD/His vector offers the following key features:


The PBAD promoter and the *ara*C gene product for regulated expression of the gene of interest

N-terminal polyhistidine tag for rapid purification of fusion proteins using ProBond[™] resin

Anti-Xpress[™] epitope for detection of fusion proteins with the Anti-Xpress[™] Antibody

Enterokinase cleavage site to facilitate removal of the fusion partner

Multiple cloning site in three reading frames to simplify subcloning in frame with the N-terminal polyhistidine tag Ampicillin resistance gene and CoIE1 origin for selection and maintenance in E. coli

16.10.14

Heterologous expression in prokaryotes – E.coli

```
Transcription
         regulated promoters
                   lambda p<sub>L</sub>, p<sub>R</sub>
                   lac, trp, tac. trc, araBAD
                   T7
         termination
                   rrnB (T1,T2), trpt
                   Lambda N gene (premature termination)
m-RNA stability
Translation
         Initiation – SD sequence ...AGGAG....
         elongation – codon usage
Protein Folding
Proteolysis
         Lon, Clp, htpR (heat shock regulatory protein)
Posttranslational Processing
Plasmid copy number and segregation
```

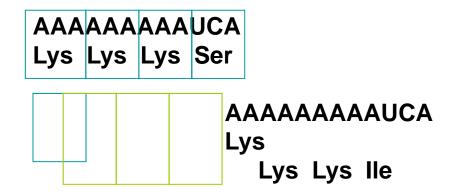
m-RNA Stability

RNA has programmed half life no good information available on factors determining decay

Secondary structures \rightarrow Target for RNases

Sequence structure → determines secondary structure and accessibility to RNases

Heterologous expression in prokaryotes – E.coli


```
Transcription
         regulated promoters
                   lambda p<sub>L</sub>, p<sub>R</sub>
                   lac, trp, tac. trc, araBAD
                   T7
         termination
                   rrnB (T1,T2), trpt
                   Lambda N gene (premature termination)
m-RNA stability
Translation
         Initiation – SD sequence ...AGGAG....
         elongation – codon usage
Protein Folding
Proteolysis
         Lon, Clp, htpR (heat shock regulatory protein)
Posttranslational Processing
Plasmid copy number and segregation
```

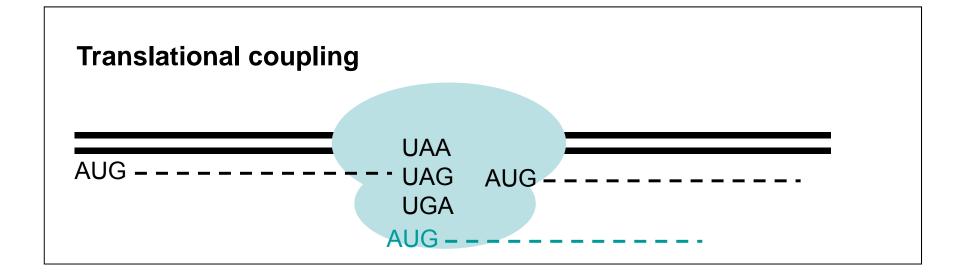
Translation Initiation

- SD sequenceAGGAG....
- Secondary structures

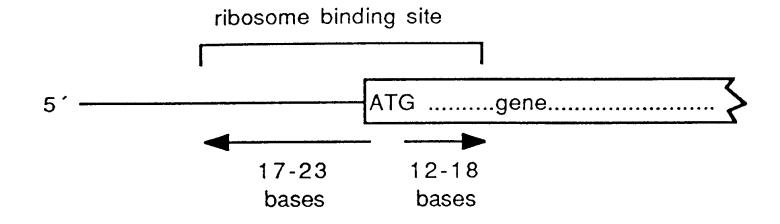
Translation elongation

- Codon usage
- Secondary structures
- Codon structure translational frameshifting

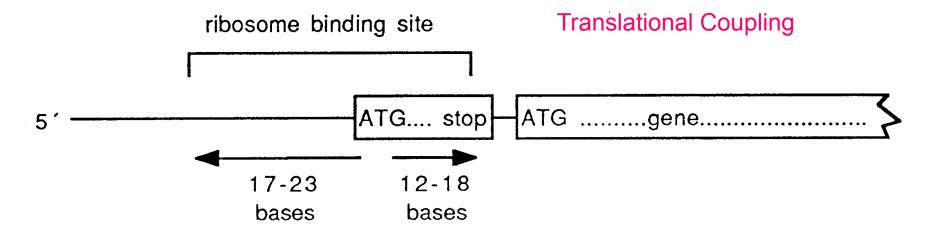
Translation - Prokaryotes


Shine-Dalgarno (SD) SequencerRNA5`-GAUACCAUCCUCCUUA-3`mRNA<td...GGAGG...(5-7bp)...AUG</td>

Influences:


Secondary structure!! SD and AUG in unstructured region

Surrounding of SD and AUG!!!


Start	
AUG	91%
GUG	8
UUG	1

Tone-cistron mRNA

two-cistron mRNA

Translation - Eukaryotes

Start Codon

mRNA 5'-CAP.....AUG
CAP structure essential for efficient
translation initiation

Influences on Translation efficiency:

Surrounding of AUG!!!

Kozak Consensus

 $\dots CC^{A}/_{G}CCAUGG\dots mammalian$ $\dots A/_{T}A^{A}/_{C}A^{A}/_{C}AAUGTC^{T}/_{C}\dots yeast$

Translation Initiation

- SD sequenceAGGAG....
- Secondary structures

Translation elongation

- Codon usage
- Secondary structures
- Codon structure translational frameshifting

Table 3.2 The genetic code and codon usage in E. coli and humans

	the second se		ge in <i>E. coli</i> and humans Frequency of use in:		Alanine
Codon	Amino acid	Frequency of			Alanine
		E. coli	Human	GCU GCC	Alanine
GGG	Glycine	0.13	0.23	AAG	Lysine
GGA	Glycine	0.09	0.26	AAA	Lysine
GGU	Glycine	0.38	0.18	AAU	Asparagine
GGC	Glycine	0.40	0.33	AAC	Asparagine
GAG	Glutamic acid	0.30	0.59	AUG	Methionine
GAA	Glutamic acid	0.70	0.41	AUA	Isoleucine
GAU	Aspartic acid	0.59	0.44	AUU	Isoleucine
GAC	Aspartic acid	0.41	0.56	AUC	Isoleucine
GUG	Valine	0.34	0.48	ACG	Threonine
JUA	Valine	0.17	0.10	ACA	Threonine
SUU	Valine	0.29	0.17	ACU	Threonine
SUC	Valine	0.20	0.25	ACC	Threonine
SCG	Alanine	0.34	0.10	UGG	Tryptophan
CA	Alanine	0.22	0.22	UGU	Cysteine
CU CC	Alanine	0.19	0.28	UGC	Cysteine
	Alanine	0.25	0.40	UGA	
AG AA	Lysine	0.24	0.60	UAG	Stop Stop
	Lysine	0.76	0.40	UAA	Stop
AU AC	Asparagine	0.39	0.44	UAU	Tyrosine
	Asparagine	0.61	0.56	UAC	Tyrosine
UG	Methionine	1.00	1.00	UUU	
AUA	Isoleucine	0.07	0.14	UUC	Phenylalanine
UU UC	Isoleucine	0.47	0.35	UCG	Phenylalanine
	Isoleucine	0.46	0.51	UCA	Serine
CG	Threonine	0.23	0.12	UCU	Serine Serine
ACA ACU	Threonine	0.12	0.27	ŬĈĊ	Serine
ACC	Threonine	0.21	0.23	AGU	Serine
JGG		0.43	0.38	AGC	Serine
	Tryptophan	1.00	1.00	CGG	Arginine
JGU JGC	Cysteine	0.43	0.42	CGA	Arginine
	Cysteine	0.57	0.58	CGU	Arginine
JGA JAG	Stop	0.30	0.61	CGC	Arginine
JAA	Stop	0.09	0.17	AGG	 Arginine
JAU	Stop	0.62	0.22	AGA	Arginine
JAC	Tyrosine	0.53	0.42	CAG	Glutamine
JUU	Tyrosine	0.47	0.58	CAA	Glutamine
JUC	Phenylalanine	0.51	0.43	CAU	Histidine
	Phenylalanine	0.49	0.57	CAC	Histidine
ICG ICA	Serine	0.13	0.06	CUG	Leucine
icu	Serine	0.12 0.19	0.15	CUA	Leucine
ĨČĊ	Serine	0.19	0.17 0.23	CUU	Leucine
GU	Serine	0.17	0.23	CUC	Leucine
GC	Serine	0.27	0.14	UUG	Leucine
GG	Arginine	0.08	0.19	UUA	Leucine
GA	Arginine	0.05	0.19	CCG	Profine
CGU	Arginine	0.42	0.09	CCA	Proline
GC	Arginine	0.37	0.10	CCU	Proline

Valine	0.17	0.10
Valine	0.29 0.20	0.17
Alanine		0.25
Alanine	0.34 0.22	0.10
Alanine	0.19	0.22 0.28
Alanine	0.25	0.40
Lysine	0.24	0.60
Lysine	0.76	0.40
Asparagine	0.39	0.44
Asparagine	0.61	0.56
Methionine	1.00	1.00
Isoleucine	0.07	0.14
Isoleucine	0.47	0.35
Isoleucine	0.46	0.51
Threonine	0.23	0.12
Threonine	0.12	0.27
Threonine	0.21	0.23
Threonine	0.43	0.38
Tryptophan	1.00	1.00
Cysteine	0.43	0.42
Cysteine	0.57	0.58
Stop	0.30	0.61
Stop	0.09	0.17
Stop	0.62	0.22
Tyrosine	0.53	0.42
Tyrosine	0.47	0.58
Phenylalanine	0.51	0.43
Phenylalanine	0.49	0.57
Serine	0.13	0.06
Serine	0.12	0.15
Serine	0.19	0.17
Serine	0.17	0.23
Serine	0.13 0.27	0.14 0.25
Arginine	0.08	
Arginine	0.08	0.19 0.10
Arginine	0.42	0.09
Arginine	0.37	0.19
 Arginine 	0.03	0.22
Arginine	0.04	0.21
Glutamine	0.69	0.73
Glutamine	0.31	0.27
Histidine	0.52	0.41
Histidine	0.48	0.59
Leucine	0.55	0.43
Leucine	0.03	0.07
Leucine	0.10	0.12
Leucine	0.10	0.20
Leucine	0.11	0.12
Leucine	0.11	0.06
Proline Proline	0.55	0.11
Proline	0.20	0.27
		11.74

Codon	Amino acid	Frequency of use in:		
		E. coli	Humans	
GGG	Glycine	0.13	0.23	
GGA	Glycine	0.09	0.26	
GGU	Glycine	0.38	0.18	
GGC	Glycine	0.40	0.33	
GAG	Glutamic acid	0.30	0.59	
GAA	Glutamic acid	0.70	0.41	
GAU	Aspartic acid	0.59	0.44	
GAC	Aspartic acid	0.41	0.56	
GUG	Valine	0.34	0.48	
GUA	Valine	0.17	0.10	
GUU	Valine	0.29	0.17	
GUC	Valine	0.20	0.25	
GCG	Alanine	0.34	0.10	
GCA	Alanine	0.22	0.22	
GCU	Alanine	0.19	0.28	
GCC	Alanine	0.25	0.40	
AAG	Lysine	0.24	0.60	
AAA	Lysine	0.76	0.40	
AAU	Asparagine	0.39	0.44	
AAC	Asparagine	0.61	0.56	
AUG	Methionine	1.00	1.00	
AUA	Isoleucine	0.07	0.14	
AUU	Isoleucine	0.47	0.35	
AUC	Isoleucine	0.46	0.51	
ACG	Threonine	0.23	0.12	
ACA	Threonine	0.12	0.27	
ACU	Threonine	0.21	0.23	
ACC	Threonine	0.43	0.38	
JGG	Tryptophan	1.00	1.00	
UGU	Cysteine	0.43	0.42	
UGC	Cysteine	0.57	0.58	
Norma a			all	

Table 3.2 The genetic code and codon usage in E. coli and humans

UGA	Stop	0.30	0.61
UAG	Stop	0.09	0.17
UAA	Stop	0.62	0.22
UAU	Tyrosine	0.53	0.42
UAC	Tyrosine	0.47	0.58
UUU	Phenylalanine	0.51	0.43
UUC	Phenylalanine	0.49	0.57
UCG	Serine	0.13	0.06
UCA	Serine	0.12	0.15
UCU	Serine	0.19	0.17
UCC	Serine	0.17	0.23
AGU	Serine	0.13	0.14
AGC	Serine	0.27	0.25
CGG	Arginine	0.08	0.19
CGA	Arginine	0.05	0.10
CGU	Arginine	0.42	0.09
CGC	Arginine	0.37	0.19
AGG	 Arginine 	0.03	0.22
AGA	Arginine	0.04	0.22 0.21
CAG	Glutamine	0.69	0.73
CAA	Glutamine	0.31	0.27
CAU	Histidine	0.52	0.41
CAC	Histidine	0.48	0.59
CUG	Leucine	0.55	0.43
CUA	Leucine	0.03	0.07
CUU	Leucine	0.10	0.12
CUC	Leucine	0.10	0.20
UUG	Leucine	0.11	0.12
UUA	Leucine	0.11	0.06
CCG	Proline	0.55	0.11
CCA	Proline	0.20	0.27
CCU	Proline	0.16	0.29
CCC	Proline	0.10	0.33

Heterologous expression in prokaryotes – E.coli

```
Transcription
         regulated promoters
                   lambda p<sub>L</sub>, p<sub>R</sub>
                   lac, trp, tac. trc, araBAD
                   T7
         termination
                   rrnB (T1,T2), trpt
                   Lambda N gene (premature termination)
m-RNA stability
Translation
         Initiation – SD sequence ...AGGAG....
         elongation – codon usage
Protein Folding
Proteolysis
         Lon, Clp, htpR (heat shock regulatory protein)
Posttranslational Processing
Plasmid copy number and segregation
```

Protein Folding

Translation Conditions

Elongation velocity Codon Structure – Pausing Domain folding

Disulide Bond Formation Redox Conditions E.coli Cytosol → bad conditions - reductive E.coli Periplasm → optimal conditions - oxidative

Chaperones

Inclusion Body Formation

Expression velocity \rightarrow Translation

Protein Folding

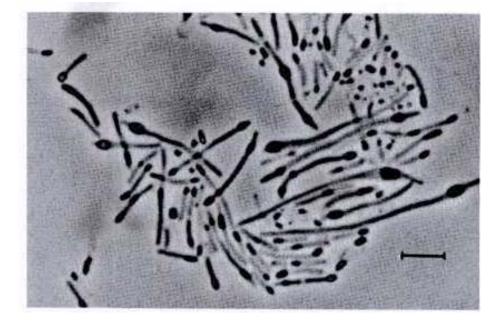
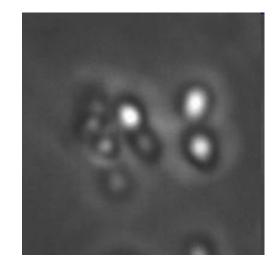
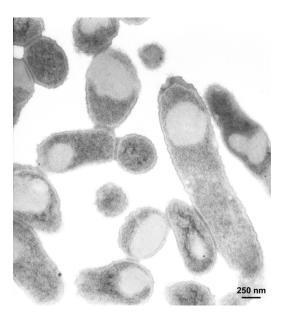




Figure 3 Phase-contrast microscopy of HB101/pBSF2-SD7 cells overproducing hIL-6 (bar equals 2 μ m). (From Ref. 61)

The Department of Surface Biotechnology with the Center for Surface Biotechnology, Box 577, BMC, 751 23 Uppsala

www.boku.ac.at/IAM/dn/EM424_23.jpg

Heterologous expression in prokaryotes – E.coli

```
Transcription
         regulated promoters
                  lambda p<sub>L</sub>, p<sub>R</sub>
                   lac, trp, tac. trc, araBAD
                   T7
         termination
                   rrnB (T1,T2), trpt
                  Lambda N gene (premature termination)
m-RNA stability
Translation
         Initiation – SD sequence ...AGGAG....
         elongation – codon usage
Protein Folding
Proteolysis
         Lon, Clp, htpR (heat shock regulatory protein)
Posttranslational Processing
Plasmid copy number and segregation
```

Post-translational modifications

Side Chain Modifications Glycosylation, Phosphorylation, Sulfatation, etc. Proteolytic Processing ss Cleavage Pro-protein processing N/C-terminal Processing

Posttranslational Processing in prokaryotes – E.coli

N-terminal processing – the problem of Met

f-Met deformylase

methionine aminopeptidase (MAP) of E.coli

peptidase M (S. typhimurium)

aminopeptidase M: Exopeptidase \rightarrow X-Pro

aminopeptidase P: NH₂-X-/Pro

dipeptidylaminopeptidase I (DAP-I, Cathepsin C) \rightarrow not at NH₂ Pro/Arg/Lys protein fusion strategies

č

sequence specific proteases

tags

Table 6.5	α -Amylase gene copy number and activity in
B. subtilis	

Copies/genome	Activity (U/mL of mid-log cells)		
2	500		
5	2,300		
7	3,100		
8	3,400		
9	4,400		
Multicopy plasmid	700		

Adapted from Kallio et al., 1987, Appl. Microbiol. Biotechnol. 27:64-71.

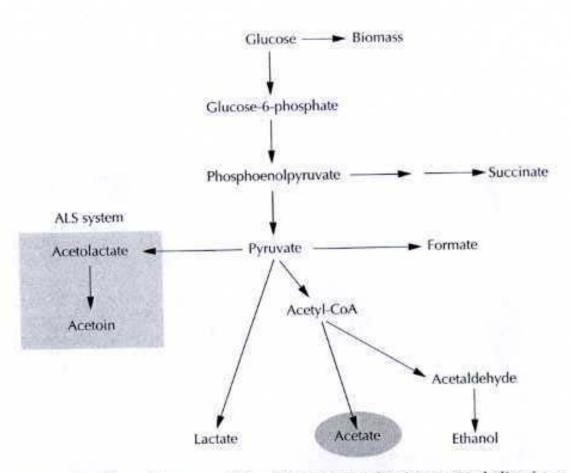
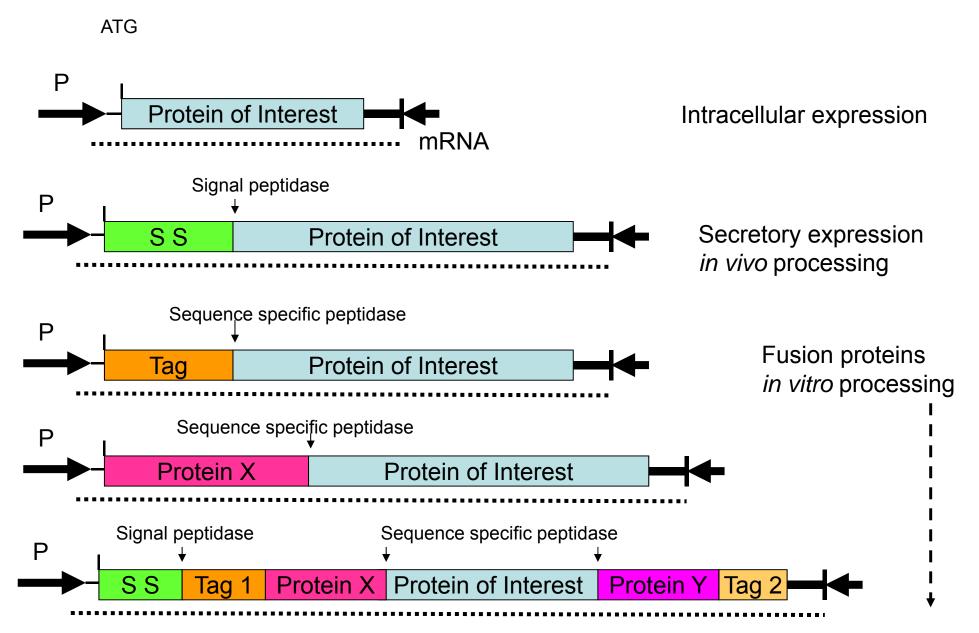

<i>E. coli</i> HB101 with plasmid:	Plasmid copy number	Relative specific growth rate
None	0	1.00
A	12	0.92
В	24	0.91
C	60	0.87
D	122	0.82
E	408	0.77

Table 6.6 Effect of plasmid copy number on host cell growth rate

Adapted from Seo and Bailey, 1985, Biotechnol. Bioeng. 27:1668-1674.


The different plasmids, designated A, B, C, D and E, encode only β lactamase and are all the same size. The growth rates were normalized to the growth rate value for *E. coli* HB101 without a plasmid.

Metabolic load

Figure 6.17 Schematic representation of the pathways for glucose metabolism in an *E. coli* strain that has been transformed with a plasmid carrying the genes for aceto-lactate synthase (ALS).

Gene Fusion Strategies

Fusion partner	Size	Ligand	Elution condition
ZZ	14 kDa	IgG	Low pH
His tail	6-10 aa	Ni ²⁺	Imidazole
Strep-tag	10 aa	Streptavidin	Iminobiotin
PinPoint	13 kDa	Streptavidin	Biotin
MBP	40 kDa	Amylose	Maltose
β-Lactamase	27 kDa	Phenyl-boronate	Borate
GST	25 kDa	Glutathione	Reducing agent
Flag	8 aa	Specific MAb	Low calcium

Table 6.3 Some fusion systems used to facilitate the purification of foreign proteins produced in *E. coli*

Adapted from Nygren et al., 1994, Trends Biotechnol. 12:184-188.

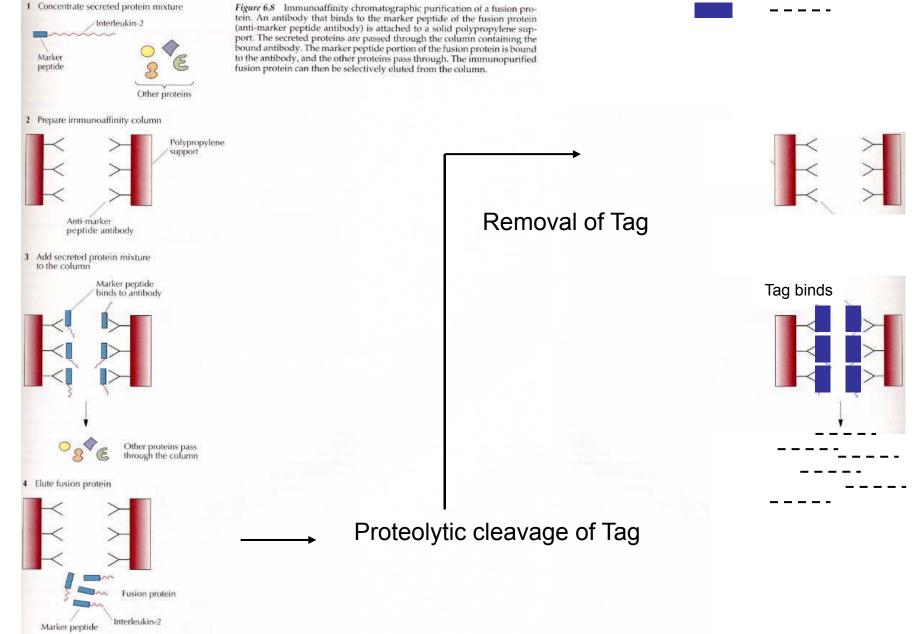
Abbreviations: aa, amino acids; kDa, kilodaltons; ZZ, a fragment of *Staphylococcus aureus* protein A; His, histidine; Strep-tag, a peptide with affinity for streptavidin; PinPoint, a protein fragment which is

Table 2 Sequence and size of affinity tags

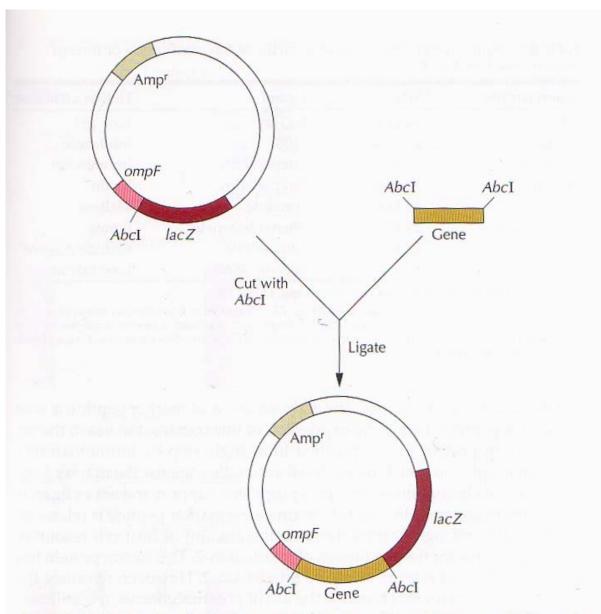
Tag	Residues	Sequence	Size (kDa)
Poly-Arg	5-6	RRRR	0.80
Poly-His	(usually 5) 2–10	ннннн	0.84
FLAG	(usually 6) 8	DYKDDDDK	1.01
Strep-tag II	8	WSHPQFEK	1.06
c-myc	11	EQKLIŠEEDL	1.20
S-	15	KETAAAKFERQHMDS	1.75
HAT-	19	KDHLIHNVHKEFHAHAHNK	2.31
3x FLAG	22	DYKDHDGDYKDHDIDYKDDDDK	2.73
Calmodulin-binding peptide	26	KRRWKKNFIAVSAANRFKKISSSGAL	2.96
Cellulose-binding domains	27 - 189	Domains	3.00-
			20.00
SBP	38	MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP	4.03
Chitin-binding domain	51	TNPGVSAWQVNTA YTAGQLVT YNGKT YKCLQPHTSLAGWEPSNVPALWQLQ	5.59
Glutathione S-transferase	211	Protein	26.00
Maltose-binding protein	396	Protein	40.00

Affinity tag	Matrix	Elution condition
Poly-Arg	Cation-exchange resin	NaCl linear gradient from 0 to 400 mM at alkaline pH>8.0
Poly-His	Ni ²⁺ -NTA, Co ²⁺ -CMA (Talon)	Imidazole 20-250 mM or low pH
FLÁG	Anti-FLAG monoclonal antibody	pH 3.0 or 2-5 mM EDTA
Strep-tag II	Strep-Tactin (modified streptavidin)	2.5 mM desthiobiotin
c-myc	Mono clonal antibody	Low pH
s	S-fragment of RNaseA	3 M guanidine thiocyanate, 0.2 M citrate pH 2, 3 M magnesium chloride
HAT (natural histidine affinity tag)	Co ²⁺ -CMA (Talon)	150 mM imidazole or low pH
Calmodulin-binding peptide	Calmodulin	EGTA or EGTA with 1 M NaCl
Cellulose-binding domain	Cellulose	Family I: guanidine HCl or urea>4 M
		Family II/III: ethylene glycol
SBP	Streptavidin	2 mM Biotin
Chitin-binding domain	Chitin	Fused with intein: 30-50 mM diffiiothreitol,
Glutathione S-transferase	Glutathione	β -mercaptoethanol or cysteine 5–10 mM reduced glutathione
Maltose-binding protein	Cross-linked amylose	10 mM maltose

Table 1 Matrices and elution conditions of affinity tags


Cleavage of Tags:

Cleavage of Tags: Enterokinase	(Hosfield and Lu 1999) based sequenceGSDYKDDDDK-	nterokinase through densitometry on the amino acid residue X ₁ . The X ₁ -ADQLTEEQIA of a GST-cal- ted using 5 mg protein digested with at 37 °C
D-D-D-C-K-X1	Amino acid in position X ₁	Cleavage of enterokinase (%)
	Alanine Methionine Lysine	88 86 85
TEV protease	Leucine Asparagine Phenylalanine	85 85 85
E-X-X-Y-X-Q-S	Isoleucine Aspartic acid Glutamic acid	84 84 80
	Glutamine Valine	79 79
α-thrombin	Arginine Threonine Tyrosine	78 78 78
X4-X3-P-R[K]-X1'-X2 L - V-P-R- G-S	Histidine Serine Cysteine	76 76 74
L - V-F-R- G-3	Glycine Tryptophan Site of	74 67 61
f	eavage of actor X _a	
X _a linker sequence	_↓	
Thr-Ala-Glu-Gly-Gly-Ser-Ile-Glu-Gly-	Arg-Val-His-Leu	


Figure 6.6 Proteolytic cleavage of a fusion protein by blood coagulation factor X_a . The factor X_a recognition sequence (X_a linker sequence) lies between the amino acid sequences of two different proteins. A functional cloned gene protein (with Val at its N terminus) is released after cleavage.

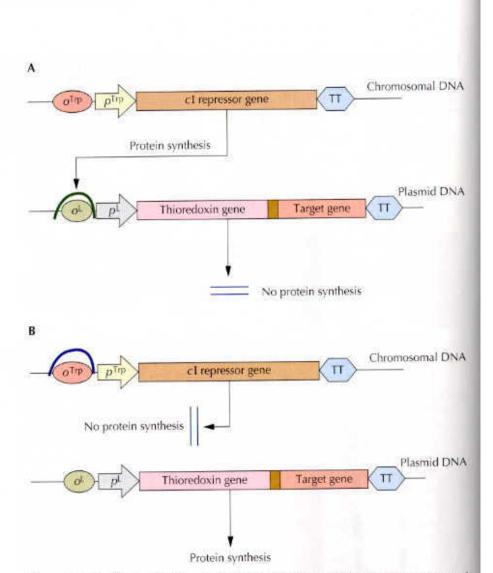
Tag purification strategies

1 Concentrate secreted protein mixture

23.10.14

Figure 6.7 Fusion protein cloning vector. The plasmid contains an ampicillin resistance (Amp^r) gene as the selectable marker, a DNA sequence encoding the N-terminal segment of the *E. coli* outer membrane protein (*ompF*), a restriction endonuclease site (*AbcI*) for cloning, and a truncated β -galactosidase gene (*lacZ*). The cloned gene (Gene) is inserted into the *AbcI* site. After transcription and translation, a tribrid protein is produced.

Examples for fusion strategies


For E.coli:

Maltose binding protein Thioredoxin reductase

Generally: well soluble proteins Well folded proteins

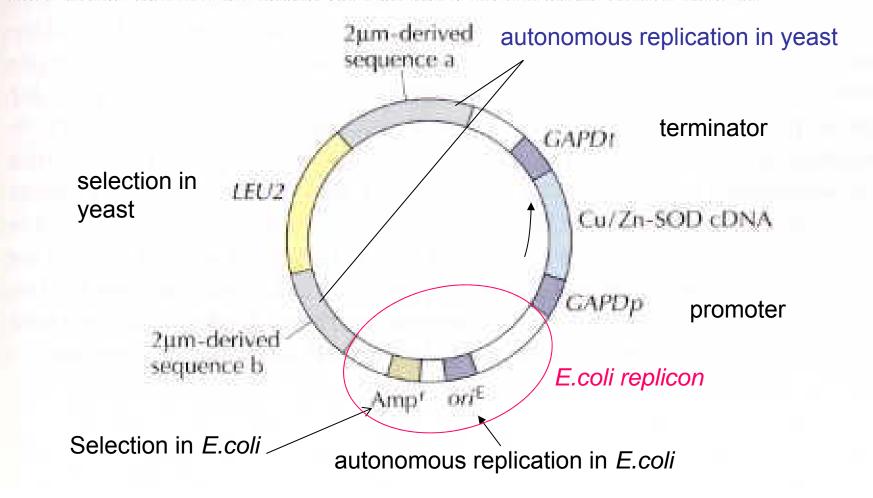
Fusions can hep for:

Translation initiation Folding Protein detection: Antibodies against Fusion partner (also with small tags)

Figure 6.9 Synthesis of a thioredoxin-target protein fusion in the absence (**A**) and in the presence (**B**) of tryptophan in the growth medium. The arrows labeled p^{Trp} and p^{L} indicate the direction of transcription. Abbreviations and designations: σ^{Trp} , the operator region where the *trp* repressor protein binds; σ^{L} , the operator region where the cl repressor binds; p^{Trp} , the *trp* promoter; p^{L} , the leftward promoter from bacteriophage lambda; TT, transcription termination region. The box with the diagonal lines indicates the DNA region that codes for the peptide that acts as the enterokinase cleavage site; the horseshoes indicate the binding of a repressor protein to its operator region.

Eukaryotic Expression Systems

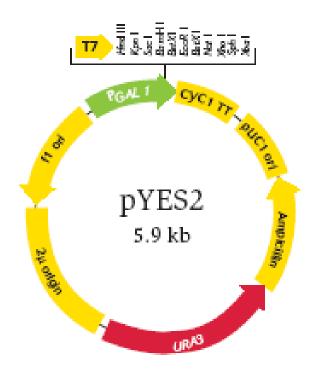
Fungi – Yeasts

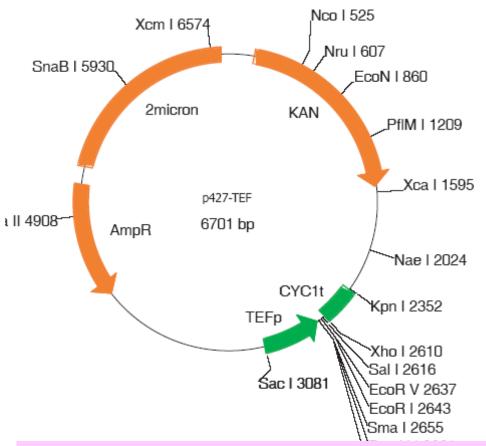

Insect Cells

Plant Cells

Mammalian Cells Mouse Hamster Avian Human **Transgenic Plants**

Transgenic Animals

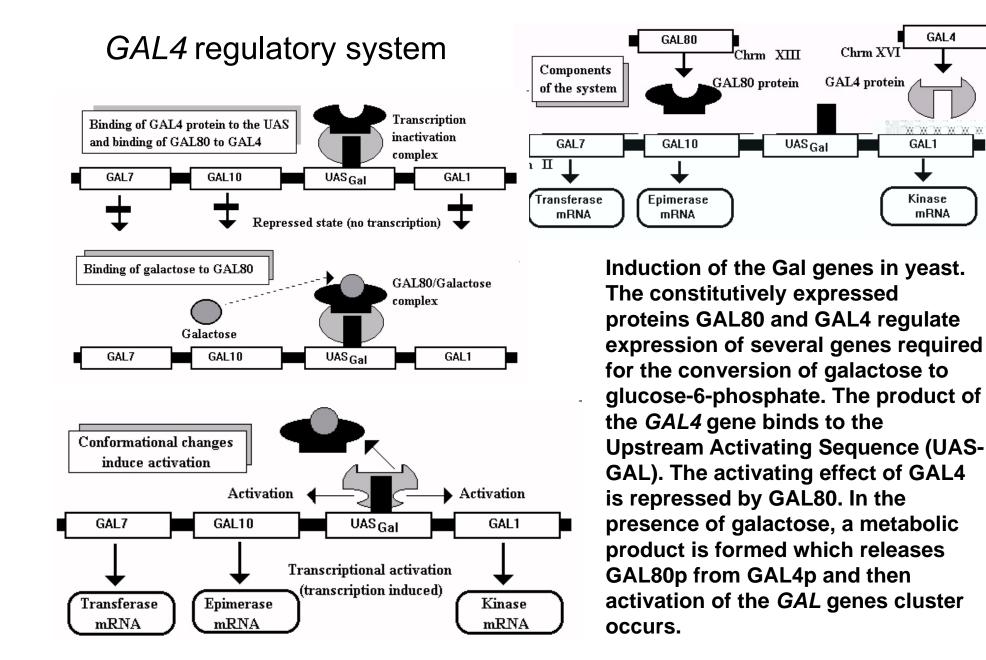

Figure 7.4 S. cerevisiae expression vector. The cDNA for human Cu/Zn-SOD has been cloned between the promoter (*GAPDp*) and termination–polyadenylation sequence (*GAPDI*) of the S. cerevisiae glyceraldehyde phosphate dehydrogenase gene. The *LEU2* gene, cloned into the middle of the yeast 2μ m plasmid DNA, encodes an enzyme of the leucine biosynthesis pathway. The yeast origin of replication is included in the 2μ m plasmid sequences. The ampicillin resistance gene (Amp^r) and the *E. coli* origin of replication (*ori*^E) are derived from plasmid pBR322.



S.cerevisiae Expression vectors

2µ-based multicopy vector

Figure 3 - pYES2 vector

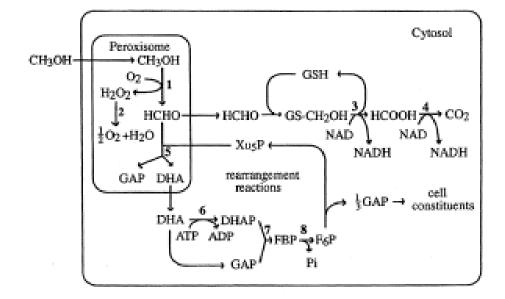

Vector features

TEFp TEF1 promoter (nt 2673-3081)

CYC1t S. cerevisiae CYC1 terminator (nt 2352-2610) KAN Kanamycine resistance gene (aminoglycoside phosphotransferase),

allows selection in yeast using 200 mg/ml G418 (nt 190-1571) 2micron Origin of replication derived from the endogenous yeast 2m circle.

Allows propagation of plasmids in yeast at high copy numbers (10-50 copies/cell, nt 5291-6637) AmpR Ampicillin resistance gene (nt 4300-5158)



C.

Protein Expression in *Pichia pastoris*

- Methylotrophic yeast
 - Two alcohol oxidase genes: AOX1, AOX2
 - AOX1: 5 % of total mRNA, 30 % of total protein
- Well established commercial expression system
- More than 300 proteins successfully expressed
 - (bacterial, virusal, fungal, plant, protozoan, invertebrate, vertebrate \rightarrow 120 human proteins)
- High cell density fermentation (>100 g/L) on simple media
- No switch to anaerobic fermentation (ethanol problem)
- Stable integration into host chromosome
- Intracellular and secretory production capacities
- Advantages of a eukaryotic host cell but simple system
 Glycosylation (N-linked, high-mannose type)
 Post-translational processing

P.pastoris Expression system

AOX1: strong expression AOX2: weak expression

Figure 1 - High Biomass of Pichia pastoris

S. cerevisiae P. pastoris

Pichia expression tools

- <u>Promoters</u> AOX1, GAP
- <u>Selection marker</u> *HIS4, ARG4, Zeocin^R, Blasticidin^R, Kanamycin^R (G418)*
- <u>Signal sequences</u> *PHO1*, alpha-Factor
- Host strains

X-33 (wt), GS115 (*his4*), KM 71 (*aox1::arg4 his4*), KM7IH (*aox1::arg4*),SMD1168 (pep4 his4), SMD1168H (*pep4*) CBS 7435 (WZ or $\triangle aox1$ or $\triangle his4$ knockouts)

Integration in *Pichia pastoris*

Gene replacement at AOX1 phenotype: Mut^S

Single cross-over integration of circular molecules *AOX1* (5' and 3' regions) *HIS4 GAP*

Tandem repeat multicopy integration

Ectopic integration events

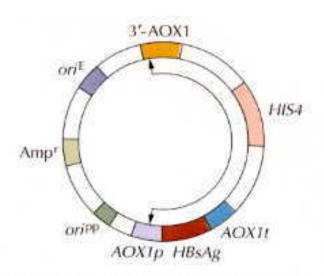


Figure 7.5 P. pastoris integrating expression vector. The HBsAg gene is cloned between the promoter (AOX1p) and termination-polyadenylation sequence (AOX1t) of the P. pastoris alcohol oxidase 1 gene. The HIS4 gene encodes histidinol dehydrogenase, which is an enzyme in the histidine biosynthesis pathway. An origin of replication from P. pastoris (oripp) is included, as are both the ampicillin resistance gene (Amp^r) and an origin of replication (oriE) that function in E. coli. The segment marked 3'-AOX1 is a piece of DNA from the 3' end of the alcohol oxidase 1 gene of P. pastoris. The joined right-angled arrows indicate the DNA region that will be integrated into the P. pastoris genome.

Integration vector for *Pichia pastoris*

Gene Replacement

Figure 7.6 Integration of part of an expression vector into the alcohol oxidase 1 gene of *P. pastoris*. The double crossover event occurs within the *AOX1p* and 3²-AOX1 DNA segments (shown at the top). This event results in the integration of the input DNA into the genomic DNA and the loss of most of the alcohol oxidase 1 gene (*AOX1*) from the host chromosome (shown at the bottom). The *HIS4* gene product enables cells with integrated DNA to grow on medium lacking histidine. In the presence of methanol, the *AOX1p* region drives the transcription of the *HBsAg* gene. The *AOX1t* segment provides transcription termination and polyadenylation signals for the *HBsAg* gene.

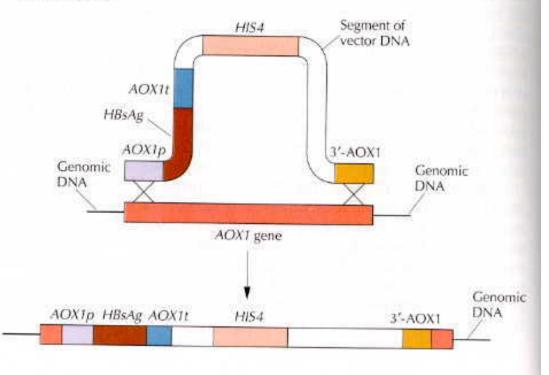
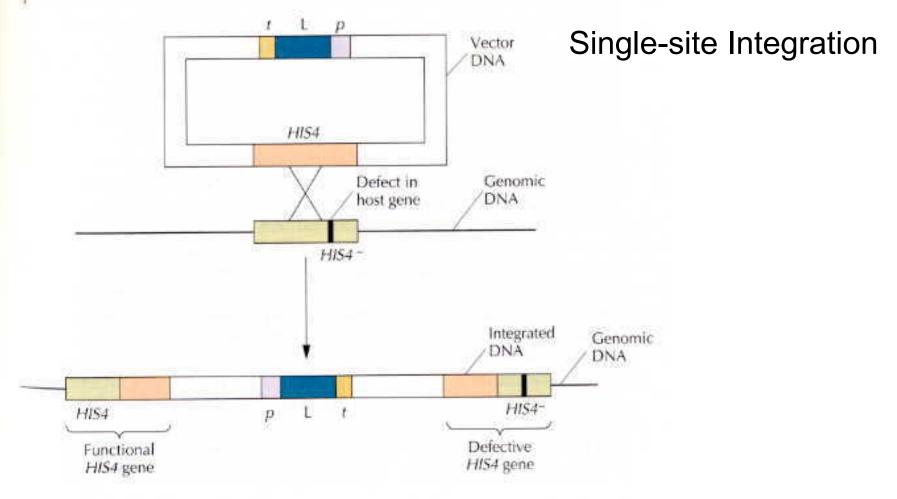
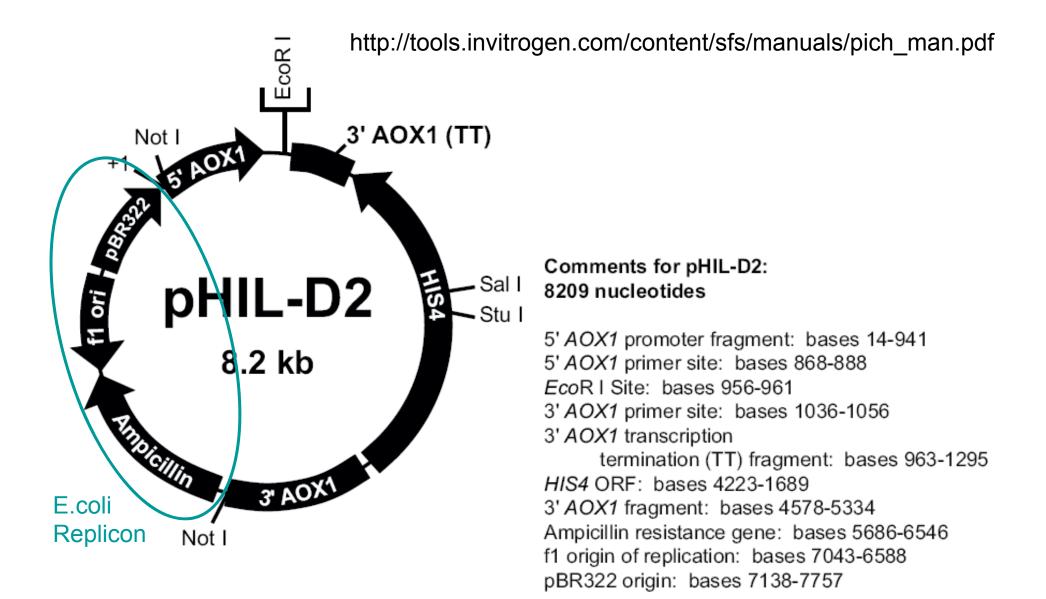
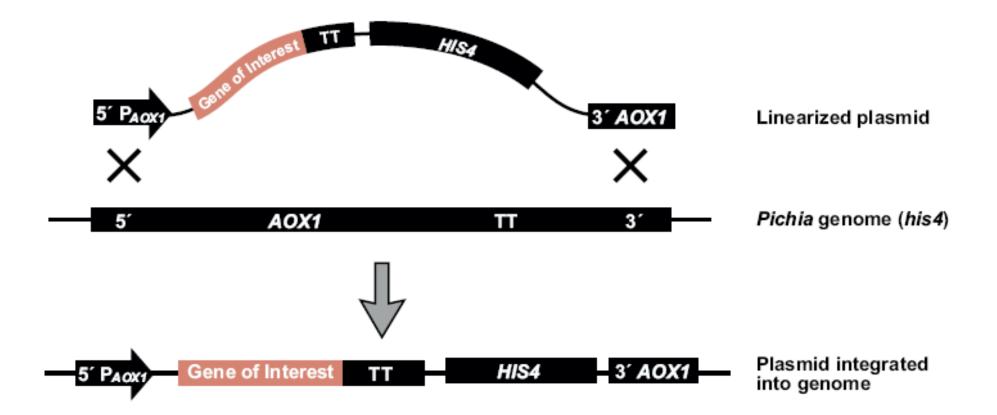
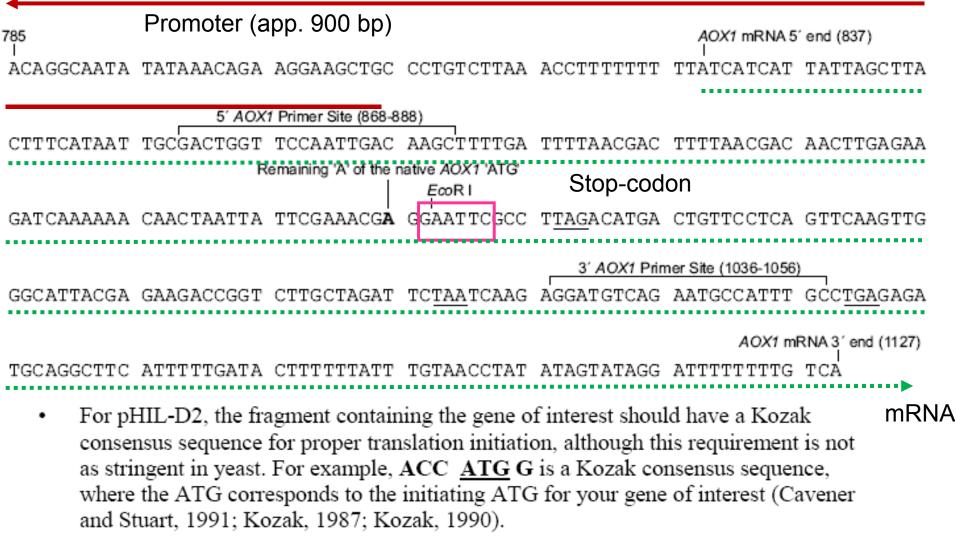
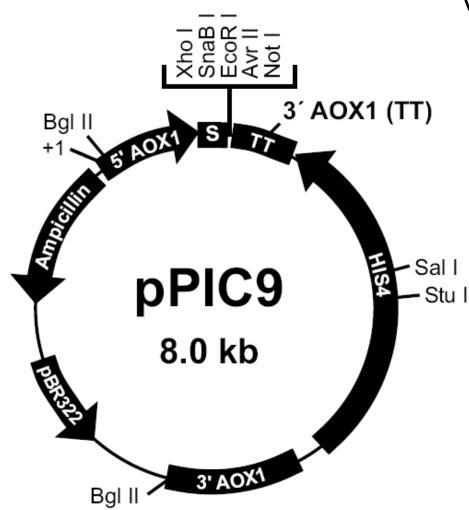





Figure 7.7 Integration of an expression vector into the defective chromosomal HIS4⁻ gene of *P. pastoris*. The input DNA is a plasmid that is first introduced by transformation into a histidine-requiring *P. pastoris* strain. A single crossover within the HIS4 gene of the plasmid and the HIS4⁻ gene of the host cell results in the integration of the entire plasmid, which then is flanked by the functional HIS4 gene and the defective HIS4⁻ gene. The letters *p*, L, and *t* denote the AOX1 promoter sequence, bovine lysozyme C2 cDNA, and AOX1 termination–polyadenylation signal sequence, respectively. The black bar in the HIS4⁻ gene represents the defective sequence.



Vector for Intracellular Expression



pHILD2

 Shorter, 5' untranslated leaders reportedly work better in AOX1 expression. In pHIL-D2, make the untranslated region as short as possible when cloning your gene.

Vector for Secretory Expression

Comments for pPIC9: 8023 nucleotides

5' AOX1 promoter fragment: bases 1-948 5' AOX1 primer site: bases 855-875 α-Factor secretion signal(s): bases 949-1215 α-Factor primer site: bases 1152-1172 Multiple Cloning Site: bases 1192-1241 3' AOX1 primer site: bases 1327-1347 3' AOX1 primer site: bases 1327-1347 3' AOX1 transcription termination (TT): bases 1253-1586 HIS4 ORF: bases 4514-1980 3' AOX1 fragment: bases 4870-5626 pBR322 origin: bases 6708-6034 Ampicillin resistance gene: bases 7713-6853

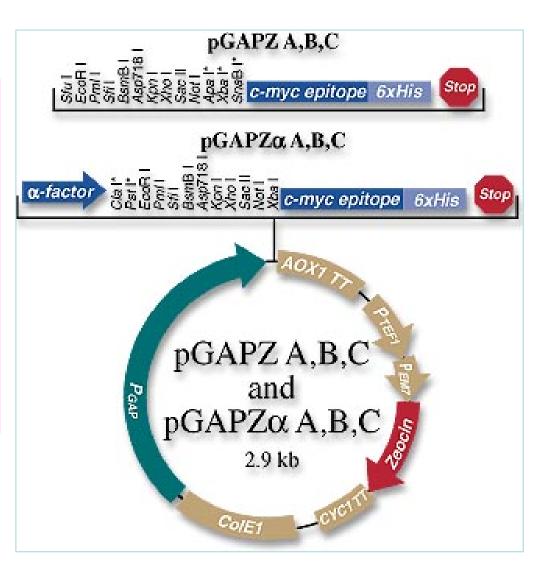
Vector for Secretory Expression

pPIC9

773

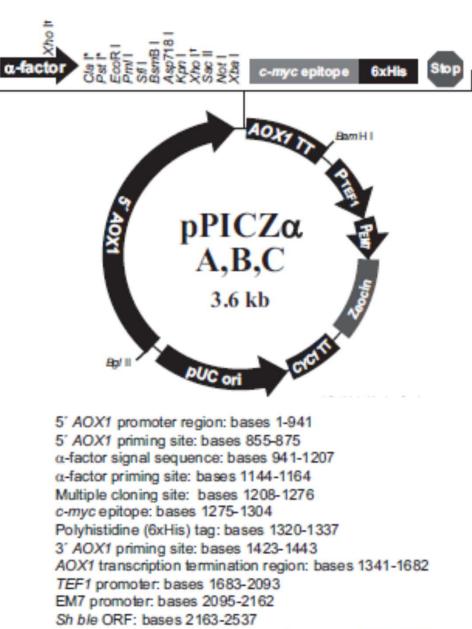
AOX1 mRNA 5' end (824)

ACAGCAATAT ATAAACAGAA GGAAGCTGCC CTGTCTTAAA CCTTTTTTT TATCATCATT ATTAGCTTAC

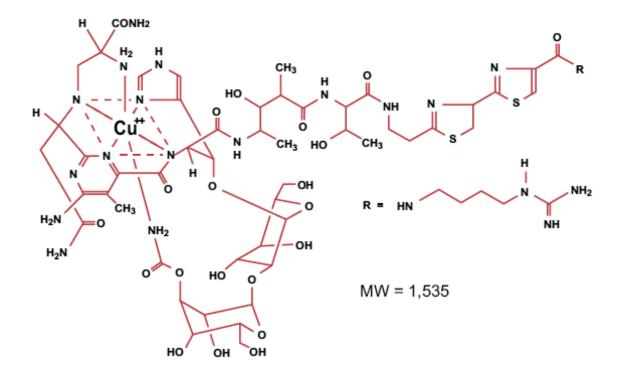

5' AOX1 Primer Site (855-875)

TTTCATAATT GCGACTGGTT CCAATTGACA AGCTTTTGAT TTTAACGACT TTTAACGACA ACTTGAGAAG

TITCHINATI GEGACIOGII CENATIONEN AGEITITGAT TITAREGACI TITAREGACA ACTIONOMAG				
α-Factor (949-1215)				
ATCAAAAAAC AACTAATTAT TCGAAGGATC CAAACG ATG AGA TTT CCT TCA ATT TTT ACT GCA Met Arg Phe Pro Ser Ile Phe Thr Ala				
Sígnal sequence				
GTT TTA TTC GCA GCA TCC TCC GCA TTA GCT GCT CCA GTC AAC ACT ACA ACA GAA GAT Val Leu Phe Ala Ala Ser Ser Ala Leu Ala Ala Pro Val Asn Thr Thr Glu Asp				
Pro- sequence				
GAA ACG GCA CAA ATT CCG GCT GAA GCT GTC ATC GGT TAC TCA GAT TTA GAA GGG GAT Glu Thr Ala Gln Ile Pro Ala Glu Ala Val Ile Gly Tyr Ser Asp Leu Glu Gly Asp				
TTC GAT GTT GCT GTT TTG CCA TTT TCC AAC AGC ACA AAT AAC GGG TTA TTG TTT ATA Phe Asp Val Ala Val Leu Pro Phe Ser Asn Ser Thr Asn Asn Gly Leu Leu Phe Ile				
α-Factor Primer Site (1152-1172)				
AAT ACT ACT ATT GCC AGC ATT GCT GCT AAA GAA GAA GGG GTA TCT CTC GAG AAA AGA Asn Thr Thr Ile Ala Ser Ile Ala Ala Lys Glu Glu Gly Val Ser Leu Glu Lys Arg				
SnaBI EcoRI AvrII NotI				
GAG GCT GAA GCT TAC GTA GAA TTC CCT AGG GCG GCC GCG AAT TAA TTCGCCT <u>TAG</u> Glu Ala Glu Ala Tyr Val Glu Phe Pro Arg Ala Ala Ala Asn ***				
Ste13 ACATGACTGT TCCTCAGTTC AAGTTGGGCA CTTACGAGAA GACCGGTCTT GC <u>TAG</u> ATTCT AATCAAGAGG				
3' AOX1 Primer Site (1327-1347)				
ATGTCAGAAT GCCATTTGCC TGAGAGATGC AGGCTTCATT TTTGATACTT TTTTATTTGT AACCTATATA				
AOX1 mRNA 3' end (1418)				
GTATAGGATT TTTTTGTCA				

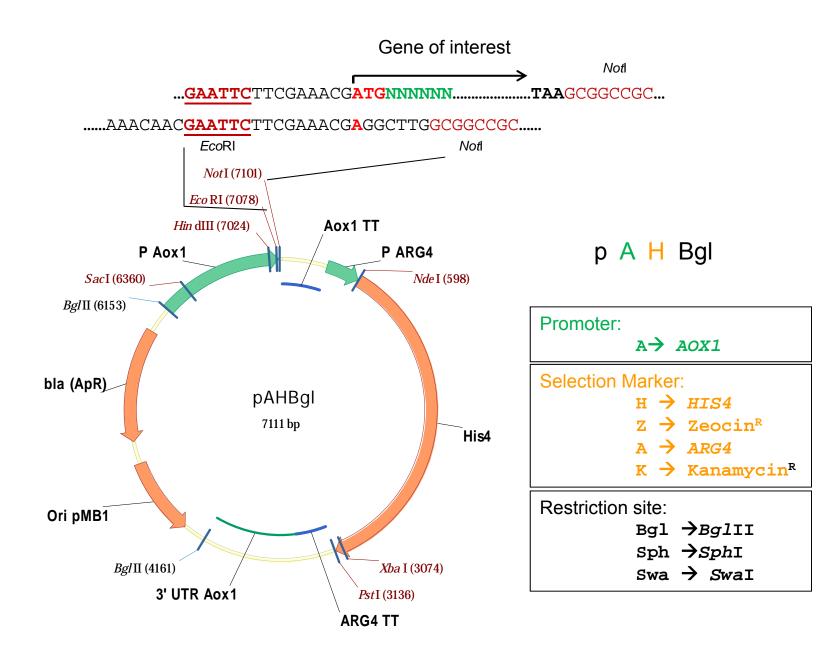

Resistance selection in *Pichia pastoris*, **multiple integration and secretion**

- P_{GAP}
- *AOX1* TT
- Zeo^R
- C-myc Epitope
- 6xHis
- alpha-factor
- ColE1 ori
- Multicopy Integration "in vivo"

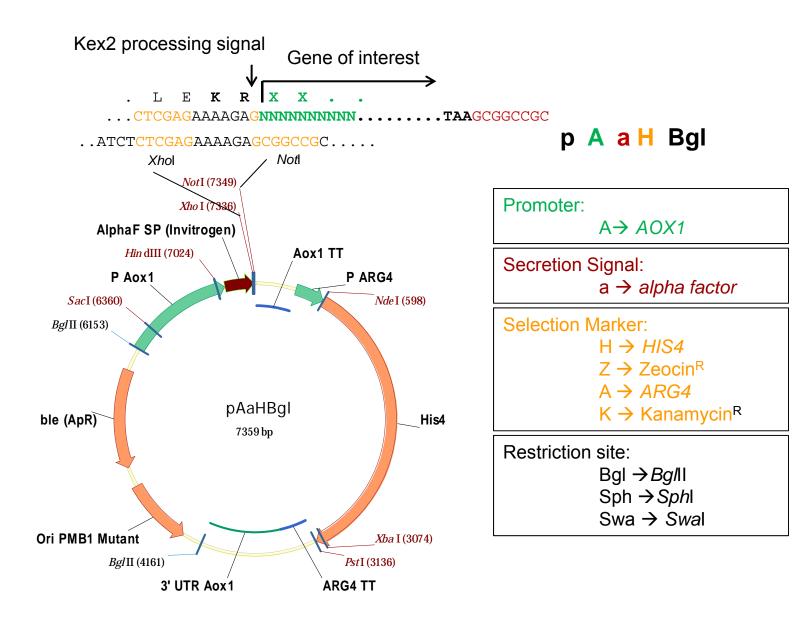


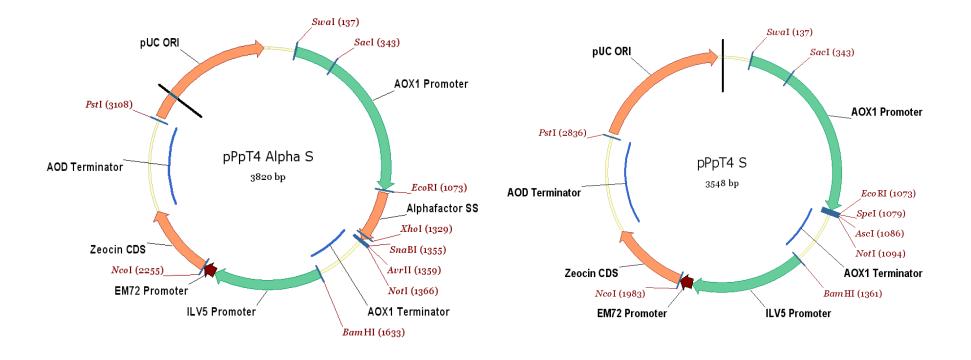
Comments for pPICZa A 3593 nucleotides

Feature	Benefit	
5' AOX1	A 942 bp fragment containing the AOX1 promoter that allows methanol-inducible, high-level expression in Pichia	
	Targets plasmid integration to the AOX1 locus.	
Native Saccharomyces cerevisiae α-factor secretion signal	Allows for efficient secretion of most proteins from Pichia	
Multiple cloning site with 10 unique restriction sites	Allows insertion of your gene into the expression vector	
C-terminal myc epitope tag	(Glu-Gln-Lys-Leu-Ile-Ser-Glu-Glu-Asp-Leu-Asn)	
	Permits detection of the fusion protein by the Anti-myc Antibody or Anti-myc-HRP Antibody (see page viii for ordering information) (Evan <i>et al.</i> , 1985)	
C-terminal polyhistidine tag	Permits purification of your recombinant fusion protein on metal-chelating resin such as ProBond™	
	In addition, the C-terminal polyhistidine tag is the epitope for the Anti-His(C-term) Antibody and the Anti-His(C-term)-HRP Antibody (see page viii for ordering information) (Lindner <i>et al.</i> , 1997)	
AOX1 Transcription Termination (TT)	Native transcription termination and polyadenylation signal from AOXI gene (~260 bp) that permits efficient 3° mRNA processing, including polyadenylation, for increased mRNA stability	
TEF1 promoter	Transcription elongation factor 1 gene promoter from Saccharomyces cerevisiae that drives expression of the Sh ble gene in Pichia, conferring Zeocin [™] resistance (GenBank Acc. no. D12478, D01130)	
EM7 (synthetic prokaryotic promoter)	Constitutive promoter that drives expression of the Sh ble gene in E. coli, conferring Zeocin [™] resistance	
Sh ble gene (Streptoalloteichus hindustanus ble gene)	Zeocin [™] resistance gene	
CYC1 transcription termination region	3' end of the Saccharomyces cerevisiae CYC1 gene that allows efficient 3' mRNA processing of the Sh ble gene for increased stability (GenBank Acc. no. M34014)	
pUC origin	Allows replication and maintenance of the plasmid in E. coli	
Sac I, Pme I, BstX I	Unique restriction sites that permit linearization of the vectors at the AOX1 locus for efficient integration into the Pichia genome	

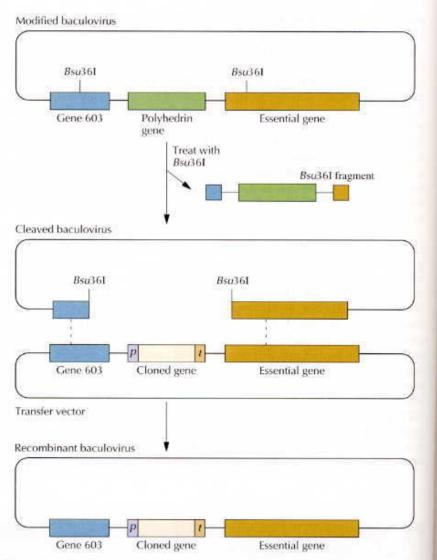


CYC1 transcription termination region: bases 2538-2855 pUC origin: bases 2866-3539 (complementary strand)




P.pastoris vectors for intracellular expression

P.pastoris vectors for secretory expression


Vectors for multiple Integrations

secretory

intracellular

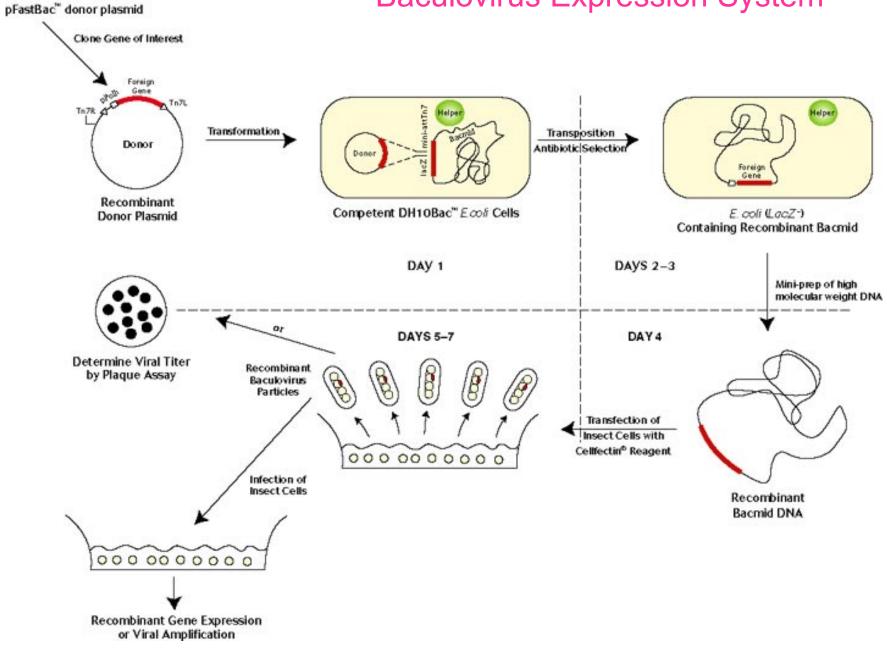
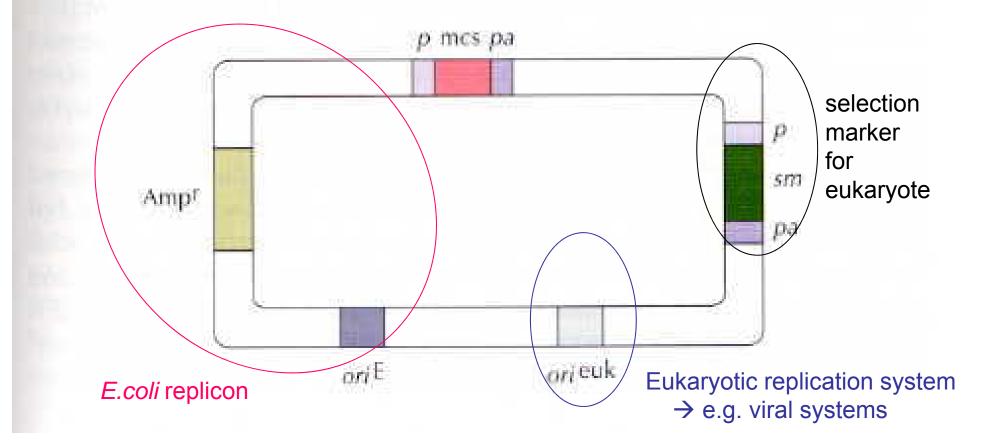

Protein expressed	Expression Level (mg/D	Reference
Bacterial proteins		
Tetanus toxin fragment C	12,000	Clare, J.J. et al. (1991) Bio/Technology 9: 455–460
α-amylase	2,500	Paifer, E. et al. (1994) Yeast 10: 1415-1419
T2A peroxidase	2,470	Thomas, L. et al. (1998) Can. J. Microbiol. 44: 364–372
C. botulinum neurotoxin fragme	nt 78	Smith, L.A. (1998) Toxicon 36: 1539-1548
Yeast proteins		
Catalase L	2,300	Calera, J.A. et al. (1997) Infect. Immun. 65: 4718–4724
Glucoamylase	400	Fierobe, HP. et al. (1997) Protein Expr. Purif. 9: 159–170
Lipase	60	Minning, S. et al. (1998) J. Biotechnol. 66: 147–156
Plant proteins		
Hydroxynitrile lyase	22,000	Hasslacher, M. et al. (1997) Protein Expr. Purif. 11: 61–71
Wheat lipid transfer protein	720	Klein, C. et al. (1998) Protein Expr. Purif. 13: 73–82
Aeroallergen	60	Huecas, S. et al. (1999) Eur. J. Biochem. 261: 539-546.
Invertebrate proteins		
Hirudin	1,500	Rosenfeld, S.A. et al. (1996) Protein Expr. Purif. 8: 476–482.
Spider dragline silk protein	663	Fahnestock, S.R. et al. (1997) Appl. Micro. Biotechnol. 47: 33–39
Honeybee olfactory protein	200	Danty, E. et al. (1999) J. Neuroscience 19: 7468-7475
Mammalian proteins		
Mouse gelatin	14,800	Werten, M.W. et al. (1999) Yeast 15: 1087-1096
Porcine carboxypeptidase B	200	Ventura, S. et al. (1999) J. Biol. Chem. 274: 19925-33
Human tumor necrosis factor	10,000	Sreekrishna, K. et al. (1989) Biochemistry 28: 4117-4125
Human IGF-1	600	Brierley, R.A. (1998) Methods Mol. Biol. 103: 149–177
Human CD38	455	Munshi, C.B. (1997) Methods Enzymol. 280: 318-330
15N-Interferon τ	10	Johnson, T.M. et al. (1999) J. Interferon Cytokine Res. 19: 631-636

Figure 7.11 Production of recombinant baculovirus. Single *Bsu36*l sites are engineered into gene 603 and a gene (ORF1629) that is essential for baculovirus replication in insect cells (essential gene) of the AcMNPV genome. These genes flank the polyhedrin gene of the AcMNPV genome. After a baculovirus with two engineered *Bsu36*l sites is treated with *Bsu36*l, the segment between the *Bsu36*l sites is deleted. After transfection of an insect cell carrying a *Bsu36*l-treated baculovirus with a transfer vector that has a cloned gene under the control of the promoter (*p*) and terminator (*t*) elements of the polyhedrin gene and the complete sequence of both gene 603 and the essential gene, a double crossover event (dashed lines) generates a recombinant baculovirus with a functional essential gene. This system produces up to 99% recombinant baculoviruses.


Baculovirus Expression System

Baculovirus Expression System

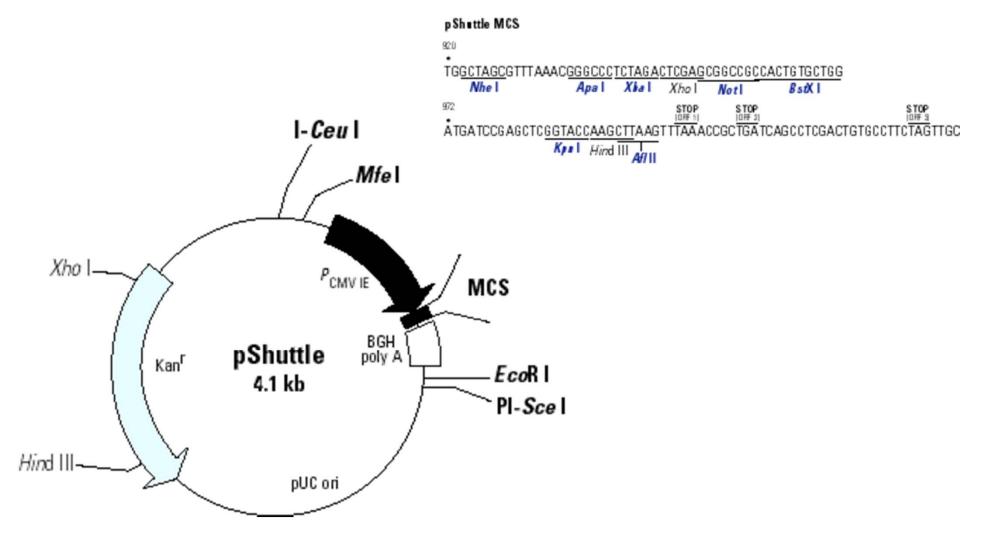
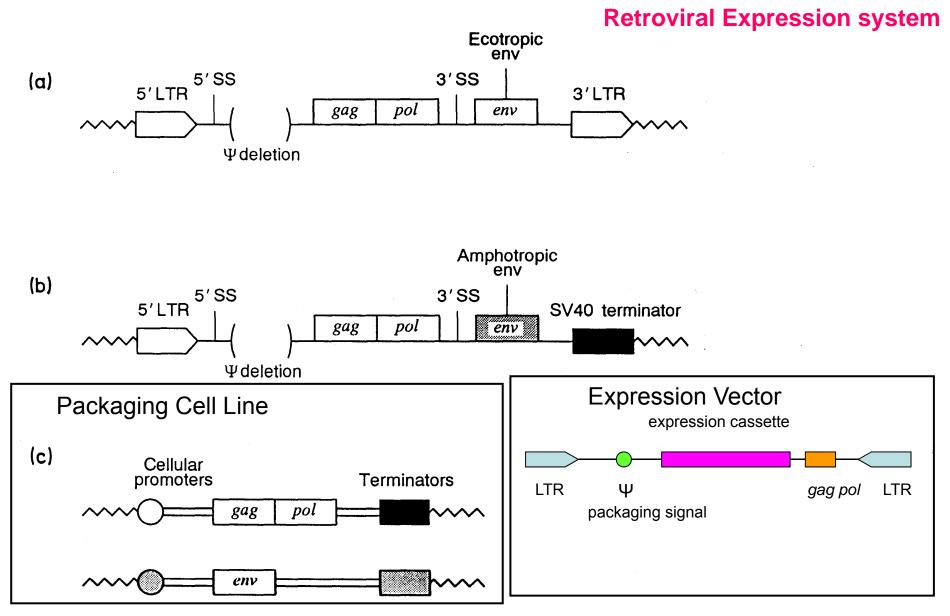
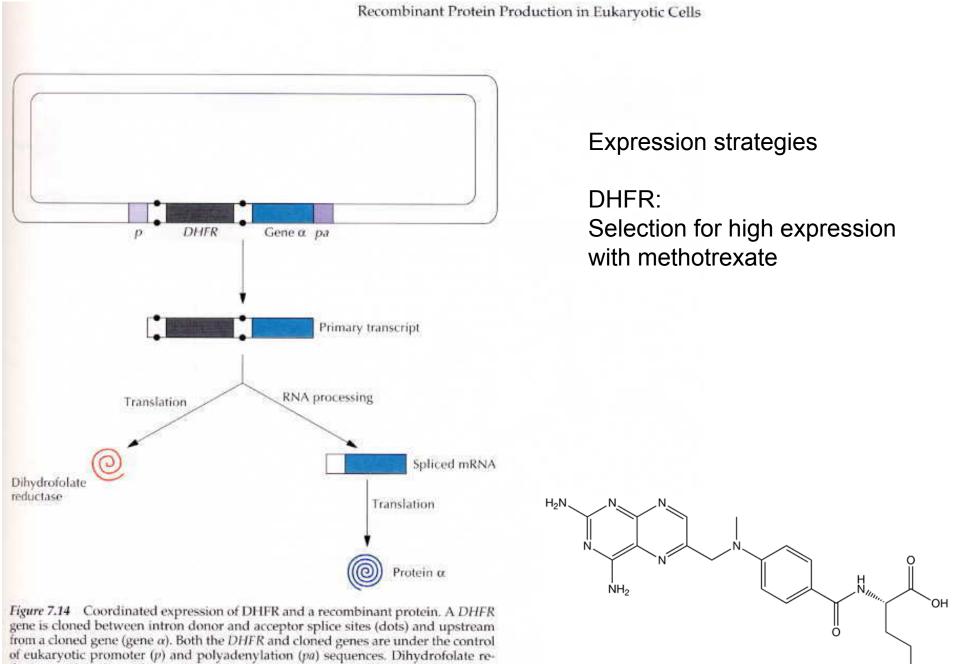

Mammalian Expression System

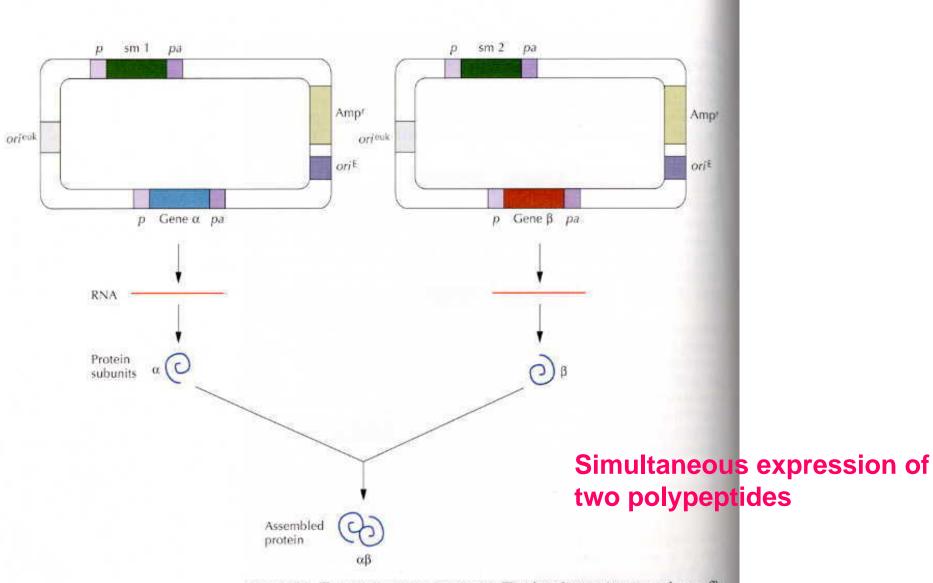
Figure 7.13 Generalized mammalian expression vector. The multiple cloning site (mcs) and selectable marker gene (sm) are under the control of eukaryotic promoter (*p*) and polyadenylation (*pa*) sequences. Propagation of the vector in *E. coli* and mammalian cells depends on the origins of replication, *ori*^E and *orieuk*, respectively. A marker gene (Amp^r) can be used for selecting

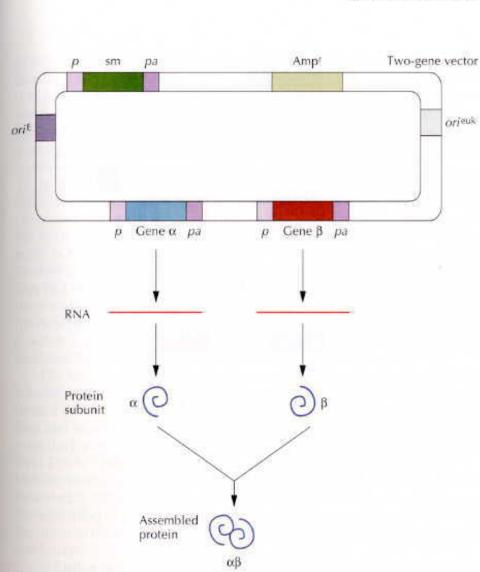
Mammalian Expression System

Simple Plasmid for ectopic integration

6.11.14


Fig. 30. Recombinant retroviral genomes in packaging cell lines. The factors required to rescue deflective


0^

ЮH

ductase and the heterologous protein (protein α) are translated from the unspliced (primary) and processed (spliced) transcripts, respectively.



Figure 7.15 Two-vector expression system. The cloned genes (gene α and gene β) encode subunits of a protein dimer ($\alpha\beta$). After cotransfection, both subunits (α and β) are synthesized and assembled into a functional protein dimer. Both vectors carry origins of replication for *E. coli* (σr^{i}) and mammalian cells (σr^{i}), a marker gene (Amp¹) for selecting transformed *E. coli*; and eukaryotic promoter (p) and polyadenylation (pa) sequences that control a selectable marker gene (sm) and each of the cloned genes (gene α and gene β).

Figure 7.16 Two-gene expression vector. The cloned genes (gene α and gene β) encode subunits of a protein dimer ($\alpha\beta$). Each cloned gene is inserted into a vector as part of its own transcription unit under the control of a eukaryotic promoter (p) and polyadenylation sequence (pa). Each subunit is translated from a separate mRNA, and a functional protein dimer ($\alpha\beta$) is assembled. Each vector carries origins of replication for *E. coli* (ori^{E}) and mammalian cells (ori^{euk}), a marker gene (Amp^r) for selecting transformed *E. coli*, and a selectable marker gene (sm) that is under the control of a eukaryotic promoter (p) and sequence polyadenylation (pa).

Simultaneous expression of two polypeptides

Figure 7.17 Dicistronic expression vector. The cloned genes (gene α and gene β) encode subunits of a protein dimer ($\alpha\beta$). Each cloned gene is inserted into a vector, and they are separated by a DNA sequence that after transcription, as part of an mRNA, acts as an IRES. The two cloned genes are under the control of a eukaryotic promoter (p) and sequence polyadenylation (pa). Translation of the mRNA occurs from the 5' end and internally (right-angled arrows). Both subunits (α and β) are synthesized and assembled into a functional protein dimer. The vector carries origins of replication for *E. coli* (ori^{E}) and mammalian cells (ori^{euk}), a selectable marker (Ampt) for selecting transformed *E. coli*, and a selectable marker gene (sm) that is under the control of a eukaryotic promoter (p) and polyadenylation sequence (pa).

Simultaneous expression of two polypeptides

IRES:

Internal Ribosome Entry Site